2 resultados para plantlet regeneration

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Zimbabwe, the average sweet potato yield (6 t/ha) is relatively low when compared to Asian counterparts (17 t/ha). These low crop yields have been blamed on weevil infestations and viral infections which account for 60-90% of sweet potato yield losses in Africa. Meristem tip culture, a Centre for Potato Improvement (CIP) initiated tissue culture technique, has been widely used to eradicate viruses from clonally propagated crops and has been noted to be one of the instrumental techniques that helped China to increase sweet potato yields. In an effort to adopt the meristem tip culture technique for the production of virus-free planting material of a local sweet potato (cv Brondal), a study was conducted to evaluate the effect of Benzylamino purine (BAP), 1-Naphthaleneacetic acid (NAA) and Gibberellic acid (GA3) (either alone or in combination) on cultured Brondal meristems. The different hormonal treatments were assessed on the following parameters: plantlet regenerative capacity, multiple plantlet production, shoot height, average leaf number per shoot and average node number per shoot, ten weeks after meristem culture. All treatments containing a combination of BAP (1 mg-L) and GA3 (at either 5 mg-L, 10 mg-L, or 20 mg-L) had a significantly (p<0.01) higher plantlet regenerative capacity of 33-66% when compared to other treatment combinations. Only treatments, 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP were capable of inducing multiple plantlet formation, producing an average of three plantlets/meristem and two plantlets/meristem respectively. Overall, treatment 10 mg-L GA3 + 1 mg-L BAP gave rise to significantly (p<0.01) taller shoots (20 mm) compared to the rest of the treatments used. For average leaf number per shoot, all GA3 treatments (5 mg-L, 10 mg-L, or 20 mg-L) supplemented with 1 mg-L BAP gave significantly (p<0.01) higher numbers of leaves (six leaves/shoot) than the rest of the treatments. Treatments 10 mg-L GA3 + 1 mg-L BAP and 20 mg-L GA3 + 1 mg-L BAP gave rise to the highest number of nodes per shoot, producing an average of three nodes per shoot. In sharp contrast to treatments containing a combination of BAP and GA3, all treatments containing a combination of BAP and NAA performed poorly in all parameters tested for plant regeneration of Brondal sweet potato variety. In conclusion, the best hormonal treatment for culturing Brondal meristems proved to be 10 mg-L GA3 + 1 mg-L BAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigeon pea ( Cajanus cajan (L.) Millsp.) is a drought tolerant pulse legume, mainly grown for grain in the semi-arid tropics, particularly in Africa. Pigeon pea production in countries like Kenya is faced with a number of challenges, particularly lack of high quality seeds. The objective of this study was to develop an in vitro regeneration system for pigeon pea varieties grown in Kenya, that is amenable to genetic transformation. In vitro regeneration of pigeon pea varieties, KAT 60/8 and ICEAP 00557, commonly grown in Kenya was achieved using leaf explants from in vitro grown seedlings, through callus initiation, followed by shoot and root induction. For callus initiation, MS media supplemented with 0.5-4 mg l-1 2, 4-D and TDZ separately were tested, and IBA at 0.1, 0.5 and 1 mg l-1 was tested for rooting of shoots. Embryogenic calli was obtained on MS containing 2, 4- D; whereas TDZ induced non-embryogenic callus alone or with shoots directly on explants. Indirect shoot regeneration frequency of 6.7 % was achieved using 1 mg l-1 2, 4-D-induced embryogenic callus obtained using KAT 60/8 explants. Whereas direct shoot regeneration frequencies of 20 and 16.7% were achieved using ICEAP 00557 and KAT 60/8 explants, using 0.5 mg l-1 and 2 mg l-1 TDZ, respectively. Optimum rooting was achieved using 0.5 mg l-1 IBA; and up to 92% rooted shoots were successfully established in soil after acclimatisation. Genotype and hormone concentrations had a significant (P<0.05) influence on callus, shoot and root induction. The protocol developed can be optimised for mass production and genetic transformation of KAT 60/8 variety.