4 resultados para phytochemical assay
em Bioline International
Resumo:
Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.
Resumo:
Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.
Resumo:
Purpose: To investigate the antimicrobial and anti-biofilm activities of essential oil from Mentha pulegium L. (EOMP) on multi-drug resistant (MDR) isolates of A. baumannii , as well as its phytochemical composition, antioxidant properties and cytotoxic activity. Methods: The phytochemical composition of EOMP was analyzed by gas chromatography, while its antimicrobial activities were determined by disc diffusion and broth micro-dilution methods. Minimal biofilm inhibition concentration (MBIC) and minimal biofilm eradication concentration (MBEC) tests were used for assessment of its anti-biofilm properties. Viability in the biofilm was studied using 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, while colorimetric assay was used to assess its cytotoxicity on L929 cells. Results: D-isomenthone, pulegone, isopulegone, menthol and piperitenone were the major components of the plant extract. EOMP produced > 22 mm inhibition zone for the isolates, with minimum inhibitory concentration (MIC) and MBIC of 0.6 - 2.5 and 0.6 - 1.25 μL/mL, respectively, while MBEC was ≥ 10 μL/msL. EOMP damaged biofilm structures formed by A. baumannii strains at MIC by 26 – 91 %. Conclusion: These results suggest that EOMP contains agents that may be useful in the development of new drugs against A. baumannii infections.
Resumo:
Purpose: To characterise the phytochemical profile of whole plants of Centaurea balsamita, C. depressa and C. lycopifolia with LC-ESI-MS/MS, and as well as their antioxidant, anticholinesterase and antimicrobial activities. Methods: Organic and aqueous extracts of the three Centaurea species were evaluated for DPPH free radical, ABTS cation radical scavenging and cupric reducing antioxidant capacity (CUPRAC). Acetyland butyryl-cholinesterase enzyme inhibition abilities of the extracts using petroleum ether, acetone, methanol and water were studied to determine anticholinesterase activity, while antimicrobial activity was determined by disc diffusion method using appropriate antimicrobial standards and organisms. The phytochemical components of the methanol extracts were assessed by LC-MS/MS. Results: The methanol extract of C. balsamita exhibited much higher DPPH free and ABTS cation radicals scavenging activities (with IC50 of 62.65 ± 0.97 and 24.21 ± 0.70 mg/ml, respectively) than the other extracts. The petroleum ether extracts of the plant species exhibited moderate inhibitory activity against butyrylcholinesterase enzymes while the acetone extract of C. balsamita showed good antifungal activity against Candida albicans. Quinic acid (17513 ± 813 μg/g, 63874 ± 3066 μg/g and 108234 ± 5195 μg/g) was the major compound found in the methanol extracts of C. balsamita, C. depressa and C. Lycopifolia, respectively. Conclusion: These results indicate quinic acid is the major compound in the three plant species and that Centaurea balsamita has significant antioxidant, anticholinesterase and antimicrobial properties. Further studies to identify the compounds in the extracts responsible for the activities are required.