4 resultados para nanomedicine, drug delivery, silver nanoparticles, glioblastoma, nanotechnology
em Bioline International
Resumo:
Purpose: To investigate the efficiency of silver nanoparticles synthesized by wet chemical method, and evaluate their antibacterial and anti-cancer activities. Methods: Wet chemical method was used to synthesize silver nanoparticles (AgNPs) from silver nitrate, trisodium citrate dehydrate (C6H5O7Na3.2H2O) and sodium borohydride (NaBH4) as reducing agent. The AgNPs and the reaction process were characterized by UV–visible spectrometry, zetasizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The antibacterial and cytotoxic effects of the synthesized nanoparticles were investigated by agar diffusion method and MTT assay respectively. Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The results showed good antibacterial properties, killing both Gram-positive and Gram-negative bacteria, and its aqueous suspension displayed cytotoxic activity against colon adenocarcinoma (HCT-116) cell line. Conclusion: The findings indicate that silver nanoparticles synthesized by wet chemical method demonstrate good cytotoxic activity in colon adenocarcinoma (HCT-116) cell lines and strong antibacterial activity against various strains of bacteria.
Resumo:
Purpose: To synthesize silver nanoparticles (AgNPs) of Arbutus andrachne leaf water extract (LE) and to evaluate the antimicrobial activity of both LE and AgNPs. Methods: The synthesized AgNPs were characterized using the following techniques: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and analysis of particle size (PS) and zeta potential (ZP). The antimicrobial activities of LE and NPs were assessed by Kirby-Bauer disc diffusion (DD) and broth microdilution (MD) methods according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI). LE and AgNPs were examined against fresh cultures of four Gram-positive and five Gram-negative bacteria, and three yeast strains. Results: AgNPs were successfully synthesized and characterized using Arbutus andrachne LE. The AgNPs showed moderate antibacterial activity against Staphylococcus aureus ATCC 6538p, S. epidermidis ATCC 12228, Escherichia coli ATCC 29998, Klebsiella pnemoniae ATCC 13883 and Pseudomonas aeruginosa ATCC 27853, and also antifungal activity against Candida albicans ATCC 10239 and C. krusei ATCC 6258. Conclusions: Due to the potent activity of AgNPs against Gram-positive and Gram-negative bacteria, and yeast strains, it is suggested that AgNPs are potential broad spectrum antimicrobial agents.
Resumo:
Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.
Resumo:
Purpose: To prepare and evaluate bioadhesive buccal films of diltiazem hydrochloride (a L-type calcium channel blocker) for overcoming the limitations of frequent dosing, low bioavailability and gastrointestinal discomfort of oral delivery. Methods: Buccal films were prepared by solvent casting technique using sodium carboxymethylcellulose, polyvinyl pyrrolidone K-30 and polyvinyl alcohol. The films were evaluated for weight, thickness, surface pH, swelling index, in vitro residence time, folding endurance, in vitro release, ex-vivo permeation (across porcine buccal mucosa) and drug content uniformity. Results: The drug content of the formulations was uniform with a range of 18.94 ± 0.066 (F2) to 20.08 ± 0.07 mg per unit film (F1). The films exhibited controlled release ranging from 58.76 ± 1.62 to 91.45 ± 1.02 % over a period > 6 h. The films containing 20 mg diltiazem hydrochloride, polyvinyl alcohol (10 %) and polyvinyl pyrrolidone (1 % w/v) i.e. formulation F5, showed moderate swelling, convenient residence time and promising drug release, and thus can be selected for further development of a buccal film for potential therapeutic uses. Conclusion: The developed formulation is a potential bioadhesive buccal system for delivering diltiazem directly to systemic circulation, circumventing first-pass metabolism, avoiding gastric discomfort and improving bioavailability at a minimal dose.