2 resultados para municipal solid wastes
em Bioline International
Resumo:
Systematic Municipal Solid Waste Management (MSWM) authorities of Sri Lanka contributes to exchange some productive outputs with localities; however it is still not in a successful mode due to limitations and environmental failures in their operation. Most of these local administrations are directly dumping Municipal Solid Waste (MSW) to an open dumping site, this manner of inappropriate disposal of MSW is become a major threat to the environment and public health in developing countries like Sri Lanka. This study was conducted for the MSWM practices of Balangoda Urban Council. The research was performed based on analyzing information obtained from field observations; reports; literature; questionnaire distribution among community; and a series of formal interviews with major stakeholders. The ongoing MSWM practices of Balangoda Urban Council encompass six categories as waste minimization and handling; waste collection; on-site separation; waste transportation; further management including grading, composting, recycling, producing sludge fertilizer; and final disposal to an open dump site. Apart from those, training sessions on MSWM are also being conducted. The purpose of this paper is to assess current status of urban waste management scenario and highlight strengths and weaknesses to understand the sustainability of the system which would help any local authority to improve MSWM.
Resumo:
Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.