1 resultado para multi-linear representations
em Bioline International
Filtro por publicador
- Aberdeen University (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (17)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (52)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- Queensland University of Technology - ePrints Archive (617)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (11)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade do Algarve (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (4)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.