3 resultados para monoterpenoid indole alkaloid
em Bioline International
Resumo:
Background: Endophytic bacteria are ubiquitous in all plant species contributing in host plant\'s nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains. Results: PCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg-1 h-1) and acid phosphatase activity (8.4 ± 1.2 nM mg-1 min-1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum , where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants. Conclusion: The study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.
Resumo:
Cocoa ( Theobroma cacao L. ) is an important allogamous tropical tree crop, whose centre of diversity is considered to be in Central America. Dry cocoa beans from five cocoa clones, and their intercrossed hybrids were analysed based on the variation of alkaloids and polyphenolic compounds contents, in order to gain insights on the heterosis and broad-sense heritability. Polyphenols and alkaloids were analysed at 280 nm by HPLC, using a Photodiode Array Detector (PDA); while anthocyanins were separated with the SEP-PAK Vac 6cc 1000 mg (waters) column and measured at 520 nm with a PDA. Dry cocoa beans displayed high content of purine alkaloids (2.1 and 8.8 mg g-1 for caffein and theobromine, respectively), and polyphenols (25 and 2978 µg g-1 for catechin and epicatechin, respectively). Among the five cocoa clones, SNK16 was the highest in purine alkaloid (caffein and theobromin) and flavanol (catechin and epicatechin); while T79/467 possessed the greatest quantity of cyanidin-3-galactoside and cyanidin-3-arabinoside. From all the parameters studied, anthocyanins (Cyanidin-3-galactoside and cyanidin-3-arabinoside) exhibited the highest level of heterosis. Parental genotypes SNK16 and T79/467 showed good aptitudes for the combination of characters because their reciprocal hybrids F5 and F9, distinguished themselves by better levels of mid-parent heterosis values. Besides, the heritability value in strict sense of this Cyanidin-3-galactoside was very high. Absence of significant difference between genotypes, coming from reciprocal crossbreeding for Cyanidin-3-galactoside, suggests that this character in cocoa would be nuclear contrary to purine alkaloids and flavan-3-ols, where their transmission to offsprings can be stated as cytoplasmic.
Resumo:
Purpose: To synthesize and characterize S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- yl)acetohydrazide (3) by refluxing with hydrazine hydrate in methanol. Ring closure reaction of 3 with carbon disulfide and ethanolic potassium hydroxide yielded 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5- thiol (4) which was finally treated with alkyl/aralkyl halides (5a-u) in DMF and NaH to yield Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u). Structural elucidation was done by IR, 1H-NMR and EI-MS techniques Results: 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol (4) was synthesized as the parent molecule and was characterized by IR and the spectrum showed peaks resonating at (cm-1) 2925 (Ar-H), 2250 (S-H ), 1593 (C=N ) and 1527 (Ar C=C ); 1H-NMR spectrum showed signals at δ 11.00 (s, 1H, NH-1ʹ), 7.49 ( br.d, J = 7.6 Hz, 1H, H-4\'), 7.37 (br.d, J = 8.0 Hz, 1H, H-7\'), 7.34 (br.s, 1H, H-2\'), 7.09 (t, J = 7.6 Hz, 1H, H-5\'), 7.00 (t, J = 7.6 Hz, 1H, H-6\') and 4.20 (s, 2H, CH2-10ʹ). EI-MS presented different fragments peaks at m/z 233 (C11H9N3OS)˙+ [M+2]+, 231 (C11H9N3OS)˙+ [M]+, 158 (C10H8NO)+, 156 (C10H8N2)˙+, 130 (C9H8N)+. The derivatives (6a-6u) were prepared and characterized accordingly. Conclusion: S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u) were successfully synthesized.