2 resultados para meiotic karyotype
em Bioline International
Resumo:
Introduction: Cayler cardio-facial syndrome is a rare syndrome associated with asymmetric crying faces with congenital heart disease. We report a newborn that was diagnosed as case of Cayler Cardio-facial syndrome based on clinical features and was confirmed with FISH analysis. Case Presentation: A term male baby, born to non-consanguineous couple through normal vaginal delivery was diagnosed to have asymmetric crying faces with deviation of angle of mouth to left side at the time of birth. The baby had normal faces while sleeping or silent. Mother was known case of hypothyroidism and was on treatment. Baby was diagnosed as case of Cayler Cardio-facial Syndrome and was investigated with echocardiogram, brain ultrasound, total body X-ray examination, X-ray of cervico-thoracic vertebral column and fundus examination. Echocardiogram showed muscular VSD, brain ultrasound was normal and fundus examination showed tortuous retinal vessels. Whole body X-ray and lateral X-ray of cervico-thoracic vertebral column were not suggestive of any skeletal abnormalities. The other associated malformation was right ear microtia. Baby FISH karyotype analysis showed deletion of 22q11.2 deletion. Baby was discharged and now on follow-up. Conclusions: Cayler syndrome is a rare syndrome which must be suspected if a baby has asymmetrical cry pattern and normal facies when baby sleeps. Patient must be evaluated with echocardiography to find out associated cardiac malformations. These infants should undergo FISH analysis for 22q11.2 deletion syndrome.
Resumo:
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.