3 resultados para luminescence Ir-complexes NIR-emission 2-(1H-tetrazol-1-yl)pyridine
em Bioline International
Resumo:
Purpose: To synthesize and characterize S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- yl)acetohydrazide (3) by refluxing with hydrazine hydrate in methanol. Ring closure reaction of 3 with carbon disulfide and ethanolic potassium hydroxide yielded 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5- thiol (4) which was finally treated with alkyl/aralkyl halides (5a-u) in DMF and NaH to yield Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u). Structural elucidation was done by IR, 1H-NMR and EI-MS techniques Results: 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol (4) was synthesized as the parent molecule and was characterized by IR and the spectrum showed peaks resonating at (cm-1) 2925 (Ar-H), 2250 (S-H ), 1593 (C=N ) and 1527 (Ar C=C ); 1H-NMR spectrum showed signals at δ 11.00 (s, 1H, NH-1ʹ), 7.49 ( br.d, J = 7.6 Hz, 1H, H-4\'), 7.37 (br.d, J = 8.0 Hz, 1H, H-7\'), 7.34 (br.s, 1H, H-2\'), 7.09 (t, J = 7.6 Hz, 1H, H-5\'), 7.00 (t, J = 7.6 Hz, 1H, H-6\') and 4.20 (s, 2H, CH2-10ʹ). EI-MS presented different fragments peaks at m/z 233 (C11H9N3OS)˙+ [M+2]+, 231 (C11H9N3OS)˙+ [M]+, 158 (C10H8NO)+, 156 (C10H8N2)˙+, 130 (C9H8N)+. The derivatives (6a-6u) were prepared and characterized accordingly. Conclusion: S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u) were successfully synthesized.
Resumo:
Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were investigated against α-glucosidase, butyrylcholinesterase (BchE) and lipoxygenase (LOX) using acarbose, eserine and baicalien as reference standards, respectively. A mixture of enzyme, test compound and the substrate was incubated and variation in absorbance noted before and after incubation. In tests for hemolytic activities, the compounds were incubated with red blood cells and variations in absorbance were used as indices their hemolytic activities. Results: The compounds were potent antibacterial agents. Five of them exhibited very good antibacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least 9.00 ± 4.12 μM against S. aureus, E.coli, and B. subtilis. One of the compounds had strong enzyme inhibitory potential against α-glucosidase, with IC50 of 17.11 ± 0.02 μg/mL which was better than that of standard acarbose (IC50 38.25 ± 0.12 μg/mL). Another compound had 1.5 % hemolytic activity. Conclusion: S-Alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol deviratives with valuable antibacterial, anti-enzymatic and hemolytic activities have been successfully synthesized. These compounds may be useful in the development of pharmaceutical products.
Resumo:
Purpose: To synthesize a series of analogues of 1,3,4-oxadiazole and to evaluate their antibacterial activity. Methods: Ethyl piperidin-4-carboxylate (1) was mixed with 4-toluenesulfonyl chloride (2) in benignant conditions to yield ethyl 1-(4-toluenesulfonyl)piperidin-4-carboxylate (3) and then 1-(4- toluenesulfonyl)piperidin-4-carbohydrazide (4). Intermolecular cyclization of 4 into 2-mercapto-5-(1-(4- toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole (5) was obtained on reflux with CS2 in the presence of KOH. Molecule 5 was stirred with alkyl halides, 6a-i, in DMF in the presence of LiH to synthesize the final compounds, 7a-i. The structures of these molecules were elucidated by Fourier transform infra-red (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) and electron impact mass spectrometry (EI-MS). Antibacterial activity was evaluated against five bacterial strains, namely, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, with ciprofloxacin used as standard antibacterial agent. Results: Out of nine synthesized derivatives, compound 7a was the most active against three bacterial strains, S. typhi, E. coli and P. aeruginosa, with minimum inhibitory concentration (MIC) of 9.11 ± 0.40, 9.89 ± 0.45 and 9.14 ± 0.72 μM, respectively, compared with 7.45 ± 0.58, 7.16 ± 0.58 and 7.14 ± 0.18 μM, respectively, for the reference standard (ciprofloxacin). Similarly, compounds 7a - 7c showed relatively good antibacterial activity against B. subtilis strain while compound 7e - 7g revealed good results against S. typhi bacterial strain. Conclusion: The results indicate that S-substituted derivatives of the parent compound are more effective antibacterial agents than the parent compound, even with minor differences in substituents