4 resultados para flavonoid glycoside
em Bioline International
Resumo:
Background: Vernonia cinerea (L.) Less is used in folk medicine as a remedy for various diseases. Objectives: The present study reports antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea. Methods: The antioxidant properties of solvent fractions of V. cinerea were evaluated by determining radicals scavenging activity, total flavonoid and phenolic contents measured with the 2,2-diphenyl-1-picryl hydrazyl (DPPH) test, the aluminum chloride and the Folin-ciocalteau methods, respectively. Antimicrobial activities were tested against human pathogenic microorganisms using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each active extract were determined. Results: The ethyl acetate fraction having the IC50 value of 6.50 μg/mL demonstrated comparable DPPH radical-scavenging activity with standard antioxidants, gallic acid and quercetin included in the study. All fractions displayed moderate antimicrobial potential against the tested pathogens with the zone of inhibition that ranged from 9.0 to 13.5 mm. The MIC (1.56 mg/mL) and MBC (3.13 mg/mL) indicated highest susceptibility of Candida albicans in all fractions. Conclusion: The results of this study showed that the solvent fractions of V. cinerea possess antioxidant and antimicrobial activities, hence justifying the folkloric use of the plant for the treatment of various ailments in traditional medicine.
Resumo:
Purpose: This study was aimed to evaluate the antioxidant activity of the methanol extract of Euphorbia spinidens (Euphorbiaceae) and its effect on Herpes simplex virus type-1 (HSV-1) replication. Methods: The methanol extract of aerial parts of E. spinidens collected from Khorasan State in North- Eastern part of Iran was used in this study. Total phenolic, flavonoid contents and the antioxidant activity were evaluated using Folin-Ciocalteu method, aluminum chloride colorimetric method and β- carotene-linoleate model system, respectively. Both the cytotoxic and antiviral effects of the crude extract on Vero cell line were determined by quantifying the viability of Vero cells using 3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2H-tetrazolium (MTS) assay. Results: Total phenolic and flavonoid contents of E.spinidens were 70 ± 1 mg of gallic acid equivalent/g of dry extract (mg GAE/g extract) and 49.66 ± 1.00 mg rutin equivalent/g of dry extract (mg RTN/g extract), respectively. Antioxidant activity was 44 ± 1 % compared with the standard, buthylated hydroxytuloene (BHT). The 50 % cytotoxic concentration (CC50) of the extract on Vero cells was 5.072 ± 0.063 mg/ml and its antiviral concentration of 50 % effectiveness (EC50) value was 0.34 ± 0.003 mg/ml. Conclusion: The findings of this study show that the methanol extract of E. spinidens has high content of phenolic and flavonoid compounds with good antioxidant activity. Furthermore, this extract has significant antiviral effect on HSV-1 probably due to the inhibition of viral replication.
Resumo:
Purpose: To investigate the antioxidant and anticancer activities of phenolics from the leaf extract of Toona sinensis (TS). Methods: Acetone leaf extract of TS was screened for total phenolic and flavanoid contents, and the flanonoids were subjected to high performance liquid chromatographic (HPLC) analysis. Antioxidant properties were assessed via oxygen radical absorbance capacity (ORAC), peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA), while anti-proliferative activity ins HepG2 cell line was assessed using methylene blue assay. Results: The extract contained 36.02 ± 0.24 mg of gallic acid equiv/g dry weight (DW) and 20.24 ± 1.73 mg of catechin equiv/g DW of total phenolic and total flavonoid, respectively. The levels of rutin and quercitrin were 0.51 and 19.55 mg/g, respectively. Epicatechin, gallic acid, quercitin, isoquercetin were not detected. The extract showed significant antioxidant potential and high anti-proliferation capacity with low cytotoxicity against HepG2 cell in vitro. The underlying mechanism of anti-proliferative effect was induction of apoptosis. Conclusion: TS leaf extract possesses significant in vitro antioxidant properties and anti-proliferative effect against HepG2 cells, which make it a potential anticancer drug source.
Resumo:
Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.