1 resultado para cyclic adenosine diphosphoribose
em Bioline International
Resumo:
Purpose: To determine the mechanism underlying the anti-hyperprolactinemia effects of Radix bupleuri extract (RBE) in rats. Methods: Rats were divided into six groups (n=10 each group): healthy controls, untreated hyperprolactinemic rats, hyperprolactinemic rats treated with bromocriptine (0.6 mg/kg), and hyperprolactinemic rats treated with RBE (4.8, 9.6, or 19.2 g/kg). After 30 days, hypothalamic protein levels of dopamine D2 receptor, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP) were determined. Results: Dopamine D2 receptor levels were lower in untreated hyperprolactinemic rats than in healthy controls (p < 0.01), but this decrease was attenuated by RBE (p < 0.05). Elevated PKA levels in untreated hyperprolactinemic rats (0.61 ± 0.04 μg/ml, p < 0.01) were decreased by RBE (4.8 g/kg, 0.42 ± 0.03 μg/ml, p < 0.05; 9.6 g/kg, 0.33 ± 0.02 μg/ml, p < 0.01; 19.2 g/kg, 0.27 ± 0.03 μg/ml, p < 0.01). Similarly, elevated cAMP levels in hyperprolactinemic rats (2.4 ± 0.4 ng/ml) were decreased by RBE (4.8 g/kg, 1.8 ± 0.3 ng/ml, p < 0.05; 9.6 g/kg, 1.5 ± 0.3 ng/ml, p < 0.01; 19.2 g/kg, 1.2 ± 0.2 ng/ml, p < 0.01). Conclusions: RBE anti-hyperprolactinemia activity is mediated by dopamine D2 receptor signaling via the cAMP/PKA pathway.