2 resultados para cost model
em Bioline International
Resumo:
Background: Rotavirus diarrhea is one of the most important causes of death among under-five children. Anti-rotavirus vaccination of these children may have a reducing effect on the disease. Objectives: this study is intended to contribute to health policy-makers of the country about the optimal decision and policy development in this area, by performing cost-effectiveness and cost-utility analysis on anti-rotavirus vaccination for under-5 children. Patients and Methods: A cost-effectiveness analysis was performed using a decision tree model to analyze rotavirus vaccination, which was compared with no vaccination with Iran’s ministry of health perspective in a 5-year time horizon. Epidemiological data were collected from published and unpublished sources. Four different assumptions were considered to the extent of the disease episode. To analyze costs, the costs of implementing the vaccination program were calculated with 98% coverage and the cost of USD 7 per dose. Medical and social costs of the disease were evaluated by sampling patients with rotavirus diarrhea, and sensitivity analysis was also performed for different episode rates and vaccine price per dose. Results: For the most optimistic assumption for the episode of illness (10.2 per year), the cost per DALY averted is 12,760 and 7,404 for RotaTeq and Rotarix vaccines, respectively, while assuming the episode of illness is 300%, they will be equal to 2,395 and 354, respectively, which will be highly cost-effective. Number of life-years gained is equal to 3,533 years. Conclusions: Assuming that the illness episodes are 100% and 300% for Rotarix and 300% for Rota Teq, the ratio of cost per DALY averted is highly cost-effective, based on the threshold of the world health organization (< 1 GDP per capita = 4526 USD). The implementation of a national rotavirus vaccination program is suggested.
Resumo:
Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.