2 resultados para contamination in soils

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work focuses on the screening of Polyalthia longifolia and Aloe vera for their phytoextractability of heavy metal in soil of the Niger Delta. 5kg of soil was polluted with 100 mg of Zn, Fe and Pb each replicated 9 times. Each set was separated into 3 subgroups. The subgroups were phytoextracted with Polyalthia longifolia and Aloe vera alongside a control (no phytoextraction) respectively. After 12 weeks, the concentration of Lead, Iron and Zinc in soils, roots and shoots was determined. Results showed that the two plants have phytoextraction ability with reductions in Zn, Fe, and Pb in the phytoextraction soil . Metal transfer factor was PB: Aloe vera (0.881) > P. longifolia (0.315); Zn: P. longifolia (0.614) > Aloe vera (0.606); Fe: Aloe vera (0.812) > P. longifolia (0.774). Translocation factors for the two plants were in the order: Zn: P. longifolia (0.79) > Aloe vera (0.36); Fe: P. longifolia (0.63) > Aloe vera (0.05); Pb: P. longifolia (0.57) > Aloe vera (0.23). Since the translocation factors were < 1, the plants can be classified as non- hyperaccumulators for these metals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.