2 resultados para cement-in-cement
em Bioline International
Resumo:
Aim: To evaluate the clinical performance of a composite resin (CR) and a resin-modified glassionomer cement (RMGIC) for the treatment of abfraction lesions. Methods: Thirty patients with abfraction lesions in at least two premolar teeth were selected and invited to participate in this study. All restorations were made within the same clinical time frame. One tooth was restored with CR Z100TM (3M, St. Paul, MN, USA), and the other was restored with RMGIC VitremerTM (3M). The restorations were assessed immediately and 1, 6 and 12 months after the restoration, using modified US Public Health Service (USPHS) criteria: marginal integrity, marginal discoloration, wear, retention, secondary caries and hypersensitivity. The statistical analysis was based on Friedman ANOVA test and Mann-Whitney test, considering p<0.05 for statistical significance. Results: Both materials demonstrated satisfactory clinical performance after one year. In the individual analysis of each material, there was a significant difference (p<0.05) in the criteria marginal integrity and wear, for both CR and RMGIC. RMGIC exhibited more damage one year after the restoration. Comparing both materials, it was found a significant difference only for marginal discoloration, while the RMGIC restorations showed the worst prognosis after a year of evaluation. There was no significant difference in the number of retentions, caries or hypersensitivity between CR and RMGIC. Conclusions: It was concluded that CR exhibited the best clinical performance according to the cost-effectiveness and evaluation criteria used in this study.
Resumo:
Aim: To evaluate the dislocation resistance of the quartz fiber post/cement/dentin interface after different adhesion strategies. Methods: Forty bovine lower central incisors were selected and prepared with K-files using the step-back technique, and irrigated with 3 mL of distilled water preceding the use of each instrument. Prepared teeth were stored at 37ºC and 100% humidity for 7 days. The roots were prepared and randomized into 4 groups. The quartz fiber post was cemented with an adhesion strategy according to the following groups: GBisCem- BISCEM; GOneStep±C&B- One Step ± C&B; GAllBond±C&B- AllBond3 ± C&B; GAllBondSE±C&B- AllBondSE ±C&B with a quartz fiber post. Cross-sectional root slices of 0.7 mm were produced and stored for 24 h at 37° C before being submitted to push-out bond strength. Results: The mean and standard deviation values of dislocation resistance were GBisCem: 1.12 (± 0.23) MPa, GOneStep±C&B: 0.81 (± 0.31) MPa, GAllBond±C&B: 0.98 (± 0.14) MPa, and GAllBondSE±C&B: 1.57 (± 0.04) MPa. GAllBondSE±C&B showed significantly higher values of dislocation resistance than the other groups. Conclusions: Based on this study design, it may be concluded that adhesion strategies showed different results of quartz post dislocation resistance. Simplified adhesive system with sodium benzene sulphinate incorporation provided superior dislocation resistance.