5 resultados para cell strain SK Mel 23
em Bioline International
The whole-cell immobilization of D-hydantoinase-engineered Escherichia coli for D-CpHPG biosynthesis
Resumo:
Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Result: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2. The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology. © 2016 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
Background: Reliable diagnostic measures for the evaluation of left ventricular systolic performance in the setting of altered myocardial loading characteristics in sickle cell anaemia remains unresolved. Objective: The study was designed to assess left ventricular systolic function in adult sickle cell patients using non-invasive endsystolic stress – end-systolic volume index ratio. Methods: A descriptive cross sectional comparative study was done using 52 patients recruited at the adult sickle cell anaemia clinic of the University of Nigeria Teaching Hospital Enugu. An equal number of age and sex-matched healthy volunteers served as controls. All the participants had haematocrit estimation, haemoglobin electrophoresis, as well as echocardiographic evaluation. Result: The mean age of the patients and controls were 23.93 ± 5.28 (range 18-42) and 24.17 ± 4.39 (range 19 -42) years respectively, (t = 0.262; p= .794). No significant difference was seen in estimate of fractional shortening, and ejection fraction. The cardiac out-put, cardiac index and velocity of circumferential shortening were all significantly increased in the cases compared with the controls. The end systolic stress – end systolic volume index ratio (ESS/ESVI) was significantly lower in cases than controls. There were strong positive correlation between the ejection phase indices (ejection fraction and fractional shortening) and end systolic stress and ESS/ESVI. Conclusion: The study findings suggest the presence of left ventricular systolic dysfunction in adult sickle cell anaemia. This is best detected using the loading-pressures independent force-length relationship expressed in ESS/ESVI ratio.
Resumo:
Chagas disease, which is caused by the intracellular protozoan Trypanosoma cruzi , is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol- 3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.
Resumo:
Acinetobacter baumannii , a strictly aerobic, non-fermentative, Gram-negative coccobacillary rod-shaped bacterium, is an opportunistic pathogen in humans. We recently isolated a multidrug-resistant A. baumannii strain KBN10P02143 from the pus sample drawn from a surgical patient in South Korea. We report the complete genome of this strain, which consists of 4,139,396 bp (G + C content, 39.08%) with 3,868 protein-coding genes, 73 tRNAs and six rRNA operons. Identification of the genes related to multidrug resistance from this genome and the discovery of a novel conjugative plasmid will increase our understanding of the pathogenicity associated with this species.
Resumo:
Purpose: To determine the effect of the secondary metabolites from Penicillium sp. H9318 on cytotoxicity and cell cycle progression. Methods: A yeast PP1 inhibitory screening system was carried out to confirm the presence of anti- PP1c activity in crude acetone extracts of strain H9318. The extracts were fractionated and identified as Fraction S1 and Citrinin 9318 (CTN9318). Various cancer cell lines were used to test for the toxicity of the crude acetone extracts, Fraction S1 and Citrinin 9318, using MTT viability assay. Results: It was found that a colorectal cancer cell line, HT-29, was susceptible to Fraction S1 and Citrinin 9318. A propidium iodide (PI)-incorporated DNA assay was used to show that there was G2/M arrest in HT-29 by Citrinin 9318. Conclusion: Citrinin 9318 inhibits the viability of HT-29 via mitotic block. The results suggest that Citrinin 9318 is capable of exerting cytotoxicity and mitotic arrest in a colon cancer cell line, HT29