2 resultados para carbon sequestration, conservation tillage, economics, greenhouse gases
em Bioline International
Resumo:
The injectivity, containment and storage capacity of sandstone reservoirs in a field in the Coastal Swamp depobelt of the onshore eastern Niger Delta were evaluated using wireline logs and seismic data to assess their potentials for carbon dioxide storage and geosequestration. The reservoir formation consists of multilayered alternating beds of sandstone and shale cap rocks. Active seismicity and fracturing intensity are low and growth faults provide the reservoir sealing mechanisms. Three reservoirs were delineated at depths between 3319 m and 3539 m which will keep injected CO2 in a supercritical state. The reservoir depth of at least 800 m, porosity and permeability of more than 10 percent and 20 mD, and a caprock thickness of at least 10 m, in addition to geothermal gradients of 13.46 to 33.66 ºC /km are the ideal conditions for the efficacy of storage. Comparison of the derived reservoir and seal properties such as porosity, permeability, thickness and depth with the minimum recommended site selection criteria shows that the reservoirs are potential candidates for carbon geosequestration with a total theoretical storage capacity of 147MM tons.
Resumo:
Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.