6 resultados para activity profile
em Bioline International
Resumo:
The polar hydroethanolic extract from Selaginella sellowii (SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.
Resumo:
Salvia is a plant genus widely used in folk medicine in the Mediterranean area since antiquity. A large number of Salvia essential oils have been reported against diverse microorganisms. In the current study, chemical composition of essential oils from leaves and flowers of Salvia algeriensis (Desf.) was determined using gas chromatography-electron impact mass spectrometry (GC-EIMS) as well as their antifungal activity against phytopathogenic fungi Alternaria solani and Fusarium oxysporum exploring disk method. The GC-EIMS analysis identified 59 compounds (84.8%) in the essential oil obtained from leaves of S. algeriensis. Its major constituents were benzaldehyde (9.7%), eugenol (8.7%) and phenylethyl alcohol (8.4%). In flowers oil, 34 compounds (92.8%) were detected. The main ones were viridiflorol (71.1%) and globulol (8.6%). The essential oil obtained from leaves exhibited the highest antifungal activity, where the effective dose inhibiting 50% of mycelial fungal (ED50) against A. solani was 0.90 μL mL-1 with minimum inhibitory concentration (MIC) equal to 2 μL mL-1, whereas the ED50 and MIC in F. oxysporum culture was 1.84 μL mL-1 and 3 μL mL-1 respectively. The mycelial inhibition by flowers oil varies from 1.77 μL mL-1 (ED50) with A. solani culture (MIC 6.5 μL mL-1) to the lowest effect recorded (ED50 3.00 μL mL-1 and MIC 9.33 μL mL-1) against F. oxysporum. To our best knowledge, this is the first report on S. algeriensis, their leaves oil can constitute an alternative biocontrol against phytopathogenic fungi commonly controlled by chemical fungicides.
Resumo:
This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.
Resumo:
Purpose: To develop some novel molecules effective against antibiotic-resistant bacterial infections. Methods: A series of azomethines (SB-1 to SB-6) were synthesized from β-phenyl acrolein moiety. The structures of the synthesized compounds were confirmed on the basis of their UV ultra-violet (UV) spectroscopy (λmax: 200 - 400 nm), Fourier transform infra-red (FTIR, vibrational frequency: 500-4000 cm-1), 1H nuclear magnetic resonance (NMR, chemical shift: 0 - 10 ppm), 13C NMR (chemical shift: 0 - 200 ppm), mass spectrometry (m/z values: 0 - 500) and carbon hydrogen nitrogen (CHN) elemental analysis. The new compounds were screened for antibacterial activity by test-tube dilution and disc diffusion methods using gentamicin as reference standard. Results: The structures of azomethine were in full agreement with their spectral data. Among all the synthesized compounds, compounds SB-5 and SB-6 exhibited the highest minimum inhibitory concentration (MIC) of 62.5 μg/mL. At MIC of 250 μg/mL, all compounds SB-1 to SB-6 displayed significant antibacterial activity, compared to gentamycin (p < 0.05). SB-5 and SB-6 were active against S. aureus, P. aeruginosa and K. pneumoniae; SB-3 was active against B. subtilis and S. aureus. SB-4 was active against P. aeruginosa and S. aureus while SB-1 and SB-2 were active against S. aureus. Conclusion: The synthesized compounds possess antibacterial activities compared to those of gentamycin.
Resumo:
Purpose: To evaluate the antitumor activity of doxorubicine (DOX)-loaded nanoemulsion (NE) on Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. Methods: The mice were divided into five groups (n = 20) according to the administered drug. Groups I - V were labeled as negative control (normal), positive control of the untreated EAC bearing mice (EAC control), blank nanoemulsion (BI-NE), DOX-loaded-NE (DOX/LNE) and free DOX (DOX-Sol), respectively. Cardiotoxicity was assessed by measuring changes in body and organ weight, analyzing serum enzymes and lipids, and examining histological changes in heart tissues by light microscopy. In addition, mean survival time (MST), increase in life span (ILS) and survival (S) of the mice were determined. Results: DOX/LNE group reduced levels of serum enzymes and lowered damage to heart tissues relative to DOX-Sol group. The MST of the DOX/LNE group (80 ± 0.0 days) was significantly greater than that for DOX-Sol group (34.6 ± 8.9 days), while ILS of DOX/LNE (265.30 days) was higher than that of DOX-Sol (57.99 days) by 4.6-fold. Conclusion: Administration of DOX/LNE to EAC-bearing mice improves the efficacy of DOX and reduce its side effects on the heart.
Resumo:
Purpose: To characterise the phytochemical profile of whole plants of Centaurea balsamita, C. depressa and C. lycopifolia with LC-ESI-MS/MS, and as well as their antioxidant, anticholinesterase and antimicrobial activities. Methods: Organic and aqueous extracts of the three Centaurea species were evaluated for DPPH free radical, ABTS cation radical scavenging and cupric reducing antioxidant capacity (CUPRAC). Acetyland butyryl-cholinesterase enzyme inhibition abilities of the extracts using petroleum ether, acetone, methanol and water were studied to determine anticholinesterase activity, while antimicrobial activity was determined by disc diffusion method using appropriate antimicrobial standards and organisms. The phytochemical components of the methanol extracts were assessed by LC-MS/MS. Results: The methanol extract of C. balsamita exhibited much higher DPPH free and ABTS cation radicals scavenging activities (with IC50 of 62.65 ± 0.97 and 24.21 ± 0.70 mg/ml, respectively) than the other extracts. The petroleum ether extracts of the plant species exhibited moderate inhibitory activity against butyrylcholinesterase enzymes while the acetone extract of C. balsamita showed good antifungal activity against Candida albicans. Quinic acid (17513 ± 813 μg/g, 63874 ± 3066 μg/g and 108234 ± 5195 μg/g) was the major compound found in the methanol extracts of C. balsamita, C. depressa and C. Lycopifolia, respectively. Conclusion: These results indicate quinic acid is the major compound in the three plant species and that Centaurea balsamita has significant antioxidant, anticholinesterase and antimicrobial properties. Further studies to identify the compounds in the extracts responsible for the activities are required.