2 resultados para Variabilité de la fréquence cardiaque

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pigeon pea ( Cajanus cajan (L.) Millsp.) is a drought tolerant pulse legume, mainly grown for grain in the semi-arid tropics, particularly in Africa. Pigeon pea production in countries like Kenya is faced with a number of challenges, particularly lack of high quality seeds. The objective of this study was to develop an in vitro regeneration system for pigeon pea varieties grown in Kenya, that is amenable to genetic transformation. In vitro regeneration of pigeon pea varieties, KAT 60/8 and ICEAP 00557, commonly grown in Kenya was achieved using leaf explants from in vitro grown seedlings, through callus initiation, followed by shoot and root induction. For callus initiation, MS media supplemented with 0.5-4 mg l-1 2, 4-D and TDZ separately were tested, and IBA at 0.1, 0.5 and 1 mg l-1 was tested for rooting of shoots. Embryogenic calli was obtained on MS containing 2, 4- D; whereas TDZ induced non-embryogenic callus alone or with shoots directly on explants. Indirect shoot regeneration frequency of 6.7 % was achieved using 1 mg l-1 2, 4-D-induced embryogenic callus obtained using KAT 60/8 explants. Whereas direct shoot regeneration frequencies of 20 and 16.7% were achieved using ICEAP 00557 and KAT 60/8 explants, using 0.5 mg l-1 and 2 mg l-1 TDZ, respectively. Optimum rooting was achieved using 0.5 mg l-1 IBA; and up to 92% rooted shoots were successfully established in soil after acclimatisation. Genotype and hormone concentrations had a significant (P<0.05) influence on callus, shoot and root induction. The protocol developed can be optimised for mass production and genetic transformation of KAT 60/8 variety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro selection is one of the most effective and efficient techniques for plant improvement. This is due to its ability to isolate plants with the desired character(s), either by applying a selection agent on the culture media to drive the selection of somaclones with the required character(s), or by establishing particular conditions that change in the genomes of somaclones toward the required character. The objective of this study was to identify a suitable protocol for in vitro selection of Allium white rot disease ( Sclerotium cepivorum ) tolerance in commercial Egyptian onion varieties, namely Giza 20, Giza 6 and Beheri Red. Oxalic acid (OA), the phytotoxin produced by Sclerotium cepivorum, was used as the selective agent. Seeds of the three Egyptian varieties were germinated on four concentrations (0.0, 0.02, 0.2, 2 and 20 mM) of Oxalic acid. Among the tested cultivars, Beheri Red had the highest germination frequency (52%) at all concentrations tested, followed by Giza 20 (42.6%), and Giza 6 at (32%). Cotyledon explants from the varieties were cultured on toxic MSBDK medium, supplemented with 0, 3, 6 and 12 mM OA. The survival of calli on MSBDK free toxic medium was 70.7% for all tested cultivars; however, MSBDK-stressed medium, with 3 mM OA reduced the viable calli to 42.1%. The highest OA concentration (12 mM) completely inhibited calli induction from cotyledons explants. A medium supplement with 3 mM OA retarded 80% of calli growth. Among 156 tested calli of Beheri Red, only 23 calli (14.7%) survived on toxic medium for 45 days. Similarly, there was 15.6% survival for Giza 20 calli, while 40.1% of the Giza 6 calli survived. Plantlets were regenerated from surviving calli and transplanted onto ex vitro, and formed bulb after acclimatisation.