7 resultados para Variétés différentiables
em Bioline International
Resumo:
Tropospheric ozone (O3), a main component of photochemical oxidants, adversely affects not only human health but also vegetation. To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on photosynthetic components and radical scavenging system in the leaves of cowpea ( Vigna unguiculata L.), two African varieties, Blackeye and Asontem, were grown in open-top chambers and exposed to filtered air (FA), non-filtered air (NF) or non-filtered air with additional O3 of approximately 50 nl l-1. Ambient levels of O3 significantly reduced chlorophyll concentration, quantum yield and activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), thus contributing to the reduction in net photosynthetic rate at the reproductive growth stage of both varieties; with no significant variety difference in the sensitivity to O3. The O3-induced significant reduction in catalase activity was observed in Blackeye at vegetative and reproductive growth stages; and in Asontem at reproductive growth stage. On the other hand, exposure to O3 significantly increased ascorbate peroxidase activity in Blackeye at reproductive stage and did not significantly affect that in Blackeye at vegetative growth stage and that in Asontem at both growth stages. At reproductive growth stage, activities of monodehydroascorbate reductase and glutathione reductase were significantly increased by the exposure to O3 in both varieties. The results obtained in this study suggest that, although ascorbate peroxidase, monodehydroascorbate reductase and glutathione reductase played important roles in scavenging O3-induced reactive oxygen species in the leaves, radical scavenging ability of these enzymes is not sufficient to avoid detrimental effects of ambient levels of O3 on photosynthesis in both African cowpea varieties.
Resumo:
Mungbean ( Vigna radiata (L.) Wilczek) is an important source of nutrients and income for smallholder farmers in East Africa. Mungbean production in countries like Uganda largely depends on landraces, in the absence of improved varieties. In order to enhance productivity, efforts have been underway to develop and evaluate mungbean varieties that meet farmers’ needs in various parts of the country. This study was conducted at six locations in Uganda, to determine the adaptability of introduced mungbean genotypes, and identify mungbean production mega-environments in Uganda. Eleven genotypes (Filsan, Sunshine, Blackgram, Mauritius1, VC6148 (50-12), VC6173 (B-10),Yellowmungo, KPS1, VC6137(B-14),VC6372(45-60),VC6153(B-20P) and one local check were evaluated in six locations during 2013 and 2014. The locations were; National Semi Arid Resources Research Institute (NaSARRI), Abi Zonal Agricultural Research and Development Institute (AbiZARDI),Kaberamaido variety trial center, Kumi variety trial center, Nabuin Zonal Agricultural Research and Development Institute (NabuinZARDI), and Ngetta Zonal Agricultural Research and Development Institute (NgettaZARDI). G × E interactions were significant for grain yield. Through GGEBiplot analysis, three introduced genotypes (Filsan, Blackgram and Sunshine) were found to be stable and high yielding, and therefore, were recommended for release. The six test multi-locations were grouped into two candidate mega-environments for mungbean production (one comprising of AbiZARDI and Kaberamaido and the other comprising of NaSARRI, NabuinZARDI, Kumi, and NgettaZARDI). National Semi Arid Resources Research Institute (NaSARRI) was the most suitable environment in terms of both discriminative ability and representativeness and therefore can be used for selection of widely adaptable genotypes.
Resumo:
Management of coconut ( Cocos nucifera ) lethal yellowing disease (CLYD), which has killed about eight million coconut trees in Mozambique, has proved challenging. The objective of this study was to investigate the impact of farming practices and related history, on the CLYD incidence in Mozambique. The methodology included a socioeconomic questionnaire to the households and direct observations on the palm farms. The collected data were analysed using logistic regression. Five out of 11 explanatory variables tested, namely farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices, and intercropping had a significant (P< 0.05) effect on CLYD incidence. Coconut farms <10 years had higher odds of higher disease incidence compared to the farms between 10 to 40 years old. The presence of other palm species in the coconut farms had two times higher odds of having higher disease incidence levels compared to farms without other palm species. Tall coconut varieties were likely to be more tolerant to CLYD compared to dwarf varieties. Coconut farms with some kind of intercropping had two times higher odds of having higher disease incidence levels compared to pure stands. The practice of cutting coconut roots had three times higher odds of having high disease incidence levels compared to non-practicing farms. Farm age, availability of other palm species on the coconut farm, type of coconut varieties grown, root cut practices and intercropping need to be considered for integrated CLYD management.
Resumo:
Pigeon pea ( Cajanus cajan (L.) Millsp.) is a drought tolerant pulse legume, mainly grown for grain in the semi-arid tropics, particularly in Africa. Pigeon pea production in countries like Kenya is faced with a number of challenges, particularly lack of high quality seeds. The objective of this study was to develop an in vitro regeneration system for pigeon pea varieties grown in Kenya, that is amenable to genetic transformation. In vitro regeneration of pigeon pea varieties, KAT 60/8 and ICEAP 00557, commonly grown in Kenya was achieved using leaf explants from in vitro grown seedlings, through callus initiation, followed by shoot and root induction. For callus initiation, MS media supplemented with 0.5-4 mg l-1 2, 4-D and TDZ separately were tested, and IBA at 0.1, 0.5 and 1 mg l-1 was tested for rooting of shoots. Embryogenic calli was obtained on MS containing 2, 4- D; whereas TDZ induced non-embryogenic callus alone or with shoots directly on explants. Indirect shoot regeneration frequency of 6.7 % was achieved using 1 mg l-1 2, 4-D-induced embryogenic callus obtained using KAT 60/8 explants. Whereas direct shoot regeneration frequencies of 20 and 16.7% were achieved using ICEAP 00557 and KAT 60/8 explants, using 0.5 mg l-1 and 2 mg l-1 TDZ, respectively. Optimum rooting was achieved using 0.5 mg l-1 IBA; and up to 92% rooted shoots were successfully established in soil after acclimatisation. Genotype and hormone concentrations had a significant (P<0.05) influence on callus, shoot and root induction. The protocol developed can be optimised for mass production and genetic transformation of KAT 60/8 variety.
Resumo:
Groundnut rosette disease (GRD) is the most destructive virus disease of Valencia groundnuts ( Arachis hypogaea L.) in sub-Saharan Africa. Cultural, biological and chemical control measures have received limited success due to small scale farmers’ inability to use them. Use of host plant resistance provides the most effective and economically viable management option for the resource poor farmers. This study was conducted to determine heritability for resistance to GRD in Valencia groundnuts. Six crosses; Valencia C (P1) × ICGV-SM 90704 (P2), Valencia C (P1) × ICGV-SM 96801(P2), Valencia C (P1) × ICGV-SM 99566 (P2), NuMex-M3 (P1) × ICGV-SM 90704 (P2), NuMex-M3 × ICGV-SM 96801 (P2), and NuMex-M3 (P1) × ICGV-SM 99566 (P2), were made to generate F1, F2, BC1P1 and BC1P2 populations. Data on GRD severity were collected on a 1-9 score scale. Genetic Advance as a percentage of the mean (GAM) and heritability were estimated using variance components. Phenotypic Coefficient of Variation (PCV) and Genotypic Coefficient of Variation (GCV) estimates were high (20.04-70.1%) in the six crosses, except for Valencia C × ICGV-SM 96801(18.1%) and NuMex-M3 × ICGV-SM 96801(17.1%), which exhibited moderate GCV values. Broad and narrow sense heritability estimates for GRD disease score ranged from 64.1 to 73.7% and 31 to 41.9%, respectively, in all the crosses. GAM was high in all the crosses (21-50.7%), except for Valencia C x ICGV-SM 96801 (14.67), M3 x ICGV-SM 99566 (18%) and NuMex-M3 x ICGV-SM 96801 (13.5%) crosses that exhibited moderate GAM. The study revealed the presence of variability of GRD resistance, implying that genetic improvement of these exotic materials is possible.
Resumo:
In vitro selection is one of the most effective and efficient techniques for plant improvement. This is due to its ability to isolate plants with the desired character(s), either by applying a selection agent on the culture media to drive the selection of somaclones with the required character(s), or by establishing particular conditions that change in the genomes of somaclones toward the required character. The objective of this study was to identify a suitable protocol for in vitro selection of Allium white rot disease ( Sclerotium cepivorum ) tolerance in commercial Egyptian onion varieties, namely Giza 20, Giza 6 and Beheri Red. Oxalic acid (OA), the phytotoxin produced by Sclerotium cepivorum, was used as the selective agent. Seeds of the three Egyptian varieties were germinated on four concentrations (0.0, 0.02, 0.2, 2 and 20 mM) of Oxalic acid. Among the tested cultivars, Beheri Red had the highest germination frequency (52%) at all concentrations tested, followed by Giza 20 (42.6%), and Giza 6 at (32%). Cotyledon explants from the varieties were cultured on toxic MSBDK medium, supplemented with 0, 3, 6 and 12 mM OA. The survival of calli on MSBDK free toxic medium was 70.7% for all tested cultivars; however, MSBDK-stressed medium, with 3 mM OA reduced the viable calli to 42.1%. The highest OA concentration (12 mM) completely inhibited calli induction from cotyledons explants. A medium supplement with 3 mM OA retarded 80% of calli growth. Among 156 tested calli of Beheri Red, only 23 calli (14.7%) survived on toxic medium for 45 days. Similarly, there was 15.6% survival for Giza 20 calli, while 40.1% of the Giza 6 calli survived. Plantlets were regenerated from surviving calli and transplanted onto ex vitro, and formed bulb after acclimatisation.
Resumo:
Alternaria blight (AB) of sweet potato ( Ipomoea batatas L. ), caused by Alternaria spp., was recently reported in South Africa, but is common in southern and eastern Africa. Elsewhere in the world, AB is controlled primarily using resistant varieties. Twenty-five sweet potato varieties/breeding lines, from different origins were assessed for tolerance to AB. The materials were planted in fields having a history of AB disease and rated for tolerance based on a General Disease Index (GDI), with the lowest scores representing tolerance, and the higher scores representing susceptibility. Variety 199062-1 had the lowest GDI value, and was the most tolerant to AB; while W119 had the highest GDI value and was the most susceptible to the disease. Other varieties/breeding lines showed a variation in GDI values between most tolerant and most susceptible. Among the fungicides tested under field conditions, the mixture azoxystrobin-difenoconazole was the most effective in reducing AB intensity. Fungicides pyraclostrobin-boscalid, unizeb, azoxystrobin-chlorothalonil and cymoxanil-mancozeb were also effective against the disease.