2 resultados para Traumatic diaphragmatic hernia

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To explore the effect of recombinant human erythropoietin (r-HuEPO) on apoptosis in rats after traumatic brain injury. Methods: A total of 48 traumatic brain-injured Sprague Dawley (SD) rats were obtained by improved Feeney’s traumatic brain injury model, and were randomly divided into four groups: normal salinetreated rats (control) and rats treated with r-HuEPO at doses of 1000 U/kg, 3000 U/kg and 5000 U/kg. Brain tissues were collected on the 7th day after trauma surgery. Apoptotic cells, and NF-kappa B (NFĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by immunohistochemical assay. Results: After treatment with r-HuEPO (3000 and 5000 U/kg), expression of NF-κB and Fas/Fasl were significantly decreased (p < 0.05) compared to control rats, especially at the 5000 U/kg dose (p < 0.01). However, for c-myc, no significant difference was observed between r-HuEPO treatment and control groups (p > 0.05). Compared to the 1000 U/kg r-HuEPO group, Fas/Fasl expression levels were significantly lower in the 3000 and 5000 U/kg r-HuEPO groups (p < 0.05). Additionally, expression of NF-κB and Fasl in the 5000 U/kg r-HuEPO group was significantly lower than that in the 3000 U/kg r- HuEPO group (p < 0.05). Moreover, the number of apoptotic cells in the r-HuEPO group (5000 U/kg) was significantly lower than in the control group (p < 0.05). Conclusion: Thus, r-HuEPO may be beneficial for treating traumatic brain injury via inhibition of NFkappa B and Fas/Fasl expressions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.