2 resultados para Texture-based volume visualization

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic variation in plants can be evaluated by morphological characterization using visual attributes. Fruits have been the major descriptors for identification of different varieties of fruit crops. However, even in their absence, farmers, breeders and interested stakeholders require to distinguish between different mango varieties. This study aimed at determining diversity in mango germplasm from the Upper Athi River (UAR) and providing useful alternative descriptors for the identification of different mango varieties in the absence of fruits. A total of 20 International Plant Genetic Resources Institute (IPGRI) descriptors for mango were selected for use in the visual assessment of 98 mango accessions from 15 sites of the UAR region of eastern Kenya. Purposive sampling was used to identify farmers growing diverse varieties of mangoes. Evaluation of the descriptors was performed on-site and the data collected were then subjected to multivariate analysis including Principal Component Analysis (PCA) and Cluster analysis, one- way analysis of variance (ANOVA) and Chi square tests. Results classified the accessions into two major groups corresponding to indigenous and exotic varieties. The PCA showed the first six principal components accounting for 75.12% of the total variance. A strong and highly significant correlation was observed between the color of fully grown leaves, leaf blade width, leaf blade length and petiole length and also between the leaf attitude, color of young leaf, stem circumference, tree height, leaf margin, growth habit and fragrance. Useful descriptors for morphological evaluation were 14 out of the selected 20; however, ANOVA and Chi square test revealed that diversity in the accessions was majorly as a result of variations in color of young leaves, leaf attitude, leaf texture, growth habit, leaf blade length, leaf blade width and petiole length traits. These results reveal that mango germplasm in the UAR has significant diversity and that other morphological traits apart from fruits can be useful in morphological characterization of mango.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.