2 resultados para Subclinical endometritis
em Bioline International
Resumo:
Background: Mycobacterium tuberculosis and human immunodeficiency virus (HIV) are known to cause abnormal thyroid function. There is little information on whether HIV infection aggravates alteration of thyroid function in patients with MDRTB. Objectives: This study was carried out to determine if HIV co-infection alters serum levels of thyroid hormones (T3, T4) and thyroid stimulating hormone (TSH) in patients with MDR-TB patients and to find out the frequency of subclinical thyroid dysfunction before the commencement of MDR-TB therapy. Methods: This observational and cross-sectional study involved all the newly admitted patients in MDR-TB Referral Centre, University College Hospital, Ibadan, Nigeria between July 2010 and December 2014. Serum levels of thyroid stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3) were determined using ELISA. Results: Enrolled were 115 patients with MDR-TB, out of which 22 (19.13%) had MDR-TB/HIV co-infection. Sick euthyroid syndrome (SES), subclinical hypothyroidism and subclinical hyperthyroidism were observed in 5 (4.35%), 9 (7.83%) and 2 (1.74%) patients respectively. The median level of TSH was insignificantly higher while the median levels of T3 and T4 were insignificantly lower in patients with MDR-TB/HIV co-infection compared with patients with MDRT-TB only. Conclusion: It could be concluded from this study that patients with MDR-TB/HIV co-infection have a similar thyroid function as patients having MDR-TB without HIV infection before commencement of MDR-TB drug regimen. Also, there is a possibility of subclinical thyroid dysfunction in patients with MDR-TB/HIV co-infection even, before the commencement of MDR-TB therapy.
Resumo:
Vitamin A (VA) deficiency (VAD) is a major nutritional public health problem among children under-5-years-old in the developing world including Kenya. A community-based cross-sectional survey among 1,630 children (aged 6-23 mos) was undertaken in Western Kenya. A questionnaire was administered to collect demographic, socio-economic and dietary intake information. Prevalence of low retinol-binding protein (RBP) concentrations was assessed using Dried Blood Spot (DBS) methodology. Analysis of RBP was carried out using rapid enzyme immunoassay (EIA) and C-reactive protein (CRP) was carried out using enzyme linked immunosorbent assay (ELISA) to estimate VA and sub-clinical inflammation statuses, respectively. Values were adjusted for influence of inflammation using CRP (CRP >5 mg/L) and population prevalence of VAD (RBP <0.825 μmol/L, biologically equivalent to 0.70 μmol/L retinol) estimated. Anthropometric data gave three indices: stunting, wasting and underweight—all of which took age and sex into consideration. Mean (geometric± SD) concentration of RBP was adequate (1.56±0.79μmol/L) but the inflammation-adjusted mean (±SE) prevalence of VAD was high (20.1±1.1%) in this population. The level of CRP was within normal range (1.06±4.95 mg/L) whilst 18.4±0.9% of the children had subclinical inflammation (CRP>5 mg/L). Intake of VA capsule (VAC) by a child was a predictor of VAD with children who have not taken VA during the past 1 year prior to the survey having a 30% increased risk of VAD (OR (CI): 1.3 (1.1-1.7); p=0.025. Additionally, age of the child was a predictor with older children (18-23 mos) having a 30 % increased risk of VAD (OR (CI): 1.3 (1.1-1.9); p=0.035); the caretaker’s knowledge on VA and nutrition was also a predictor of VAD with children whose caretaker’s had poor knowledge having a 40 % increased risk of VAD (OR (CI): 1.4 (1.0-1.9); p=0.027. A child’s district of residence was also a significant predictor of VAD. Prevalence of VAD in this sample of infants was high. Predictors of VAD included child intake of VAC in the last 1 year before the survey, older children, children whose caretakers had poor VA and nutritional knowledge and a child’s district of residence. There is a need to improve knowledge on nutrition and VA of caretakers; undertake a targeted VAC distribution, particularly in children older than 1 year and above and use a sustainable food-based intervention in the areas with severe VAD.