2 resultados para SURFACE RESPONSE

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the semi-arid zones of Uganda, pearl millet ( Pennisetum glaucum (L.) R. Br.) is mainly grown for food and income; but rust (Puccinia substriata var indica (L.) R. Br.) is the main foliar constraint lowering yield. The objective of the study was to genetically improve grain yield and rust resistance of two locally adapted populations (Lam and Omoda), through two cycles of modified phenotypic S1 progeny recurrent selection. Treatments included three cycles of two locally adapted pearl millet populations, evaluated at three locations. Significant net genetic gain for grain yield (72 and 36%) were achieved in Lam and Omoda populations, respectively. This led to grain yield of 1,047 from 611 kg ha-1 in Lam population and 943 from 693 kg ha-1 in Omoda population. Significant improvement in rust resistance was achieved in the two populations, with a net genetic gain of -55 and -71% in Lam and Omoda populations, respectively. Rust severity reduced from 30 to 14% in Lam population and from 57 to 17% in Omoda population. Net positive genetic gains of 68 and 8% were also achieved for 1000-grain weight in Lam and Omoda, respectively. Traits with a net negative genetic gain in both populations were days to 50% flowering, days to 50% anthesis, days to 50% physiological maturity, flower-anthesis interval, plant height and leaf area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To develop a novel chitosan/gelatin-hydroxyapatite (CGHaP) microspheres for evaluating the biological response of pre-osteoblast cells. Methods: The microsphere was prepared by water-in-oil emulsion method. Cell proliferation was studied using AlamarBlue colorimetric assay and DAPI staining while alkaline phosphatase assay was carried out by colorimetric assay method. Chitosan microspheres as well as chitosan-hydroxyapatite microspheres was prepared and tested for biological response from MC3T3-E1 cell line. Results: The results showed that CGHaP promotes MC3T3-E1 cell proliferation and spread on the surface of microspheres. The cells were clustered with more actin filaments and well-linked with neighbouring cells or adjacent cells when cultured in CGHaP microspheres whereas fewer cells were spread on chitosan (CH) microspheres. CGHaP microspheres significantly (p < 0.05) promoted cell attachment, proliferation and extracellular matrix mineralization. CGHaP microspheres presented significantly (p < 0.02) higher calcium deposition (0.5 ng) than CH microspheres (0.28 ng). Specifically, CGHaP microspheres exhibited high ALP activity (8 units; 2-fold) compared to CH with 3 units, after 7 days of incubation. The results suggest that CGHaP possesses a great ability to facilitate bone ingrowth formation and possibility of good osteointegration in vivo. Conclusion: The nanomaterial enhances the proliferation of pre-osteoblast cells in tissue engineering microspheres. The outcome of this study may have a major impact on the development of novel nanomaterials for bone tissue engineering.