2 resultados para SUPERFAMILY
em Bioline International
Resumo:
Background: CD166, an adhesion molecule of the immunoglobulin superfamily, is one of the crucial effectors that traffic lymphocytes into tissues. Till now, the expression and role of CD166 in the chronic kidney disease remains unknown. Objectives: In the present study, we are to examine the expression of CD166 in the chronic kidney disease, and to explore its function with CD4+ T cells. Materials and Methods: CD166 expression was tested by Flow Cytometry (FACS) in the primary macrophages stimulated with LPS. In vivo, the expression of CD166 and CD4 were examined in the kidney tissues of adriamycin-induced nephropathy (AN) mice by immnohistochemistry. Macrophages and lymphocytes were co-cultured, the interaction between CD166 and CD4 was tested by immunofluorescent staining. Furthermore, the effects of CD166 on the activation and proliferation of T cells were explored. Results: In this study, CD166 expression was found to be upregulated on activated macrophages and glomerular endothelia in the adriamycin-induced nephropathy (AN) mice and CD4+ T cells were increased with CD166 expression in the AN mice. The interaction between macrophages and CD4+ T cells indicated that CD166 played a key role in the recruitment of lymphocytes in the chronic kidney disease, and neither proliferation nor activation of T cells was affected by CD166. Conclusions: CD166 expressed on macrophages and endothelia in AN kidney, and the function was related to the recruitment of CD4+ T cells into inflamed kidney, indicating that CD166 may be a potential target for reducing the inflammatory infiltrates in the chronic kidney disease.
Resumo:
Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.