3 resultados para SERUM CREATININE

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To observe the clinical effects of sirolimus (SRL) immunosuppressive therapy in patients with progressively increasing levels of serum creatinine (Scr) after renal transplant. Methods: In total, 180 patients whose Scr levels had been rising after renal transplant were given an oral calcineurin inhibitor (CNI): either cyclosporine A (CsA) or tacrolimus (FK506). All patients were treated at People’s Hospital of Zhengzhou, China, between January 2011 and December 2013, and were given SRL-based conversion treatment. Scr level and glomerular filtration rate (GFR) were observed before and 1, 3, and 6 months after treatment initiation. In addition, liver function, blood glucose, blood lipid levels, rejection reaction incidence, and mortality were recorded to evaluate the effects of SRL. Results: Scr levels were 116.60 ± 30.60 μmol/L and 119.00 ± 24.60 μmol/L, and GFR was 70.00 ± 19.70 mL/min and 75.90 ± 15.60 mL/min, at 3 and 6 months after treatment, respectively. The 3- and 6- month Scr and GFR values were statistically different (p < 0.05) compared to pre-treatment levels (Scr: 144.10 ± 61.70 μmol/L vs and GFR: 59.10 ± 16.20 mL/min. Acute rejection (AR) occurred in 20 patients (13.30 %) within 6 months of treatment initiation, but rejection was reversed with conventional methylprednisolone therapy. Twenty-one patients (11.70 %) developed lung infections, but all were cured. There were no significant differences in liver function before and after treatment. Conclusion: SRL-based immunosuppressive therapy is effective in treating patients with increased Scr levels after renal transplant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) on streptozotocin-induced diabetic rats. Methods: The aqueous extract of AMB was obtained by steeping the dried Astragalus membranaceus (Fisch.) Bunge. in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabete model rats was induced by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, normal control group, reference group (glibenclamide1 mg/kgbody weight) as well as AMB extract groups, namely, 40, 80 and 160 mg/kg body weight. Antihyperglycemic effect was measured by blood glucose and plasma insulin levels. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipidperoxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT), while blood serum levels of creatinine and urea were also determined in both diabetic control and treated rats. Results: Compared with diabetic rats, oral administration of AMBE at a concentration of 160 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose (109.438 ± 3.52, p < 0.05) and increased insulin level (13.96 ± 0.74, p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.29, p < 0.05) and serum urea (45.14 ± 1.79, p < 0.05). The treatment also resulted in significant increase in GSH (49.21 ± 2.59, p < 0.05), GPx (11.96 ± 1.16, p < 0.05), SOD (14.13 ± 0.49, p < 0.05), CAT (83.25 ± 3.14, p < 0.05) level in the liver and kidney of diabetic rats. Conclusion: The results suggest that AMBE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. AMBE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the anti-hyperuricemic effect of Dioscorea tokoro Makino extract (DTME) in potassium oxonate-induced hyperuricemic mice. Method: The effect of DTME was investigated in the hyperuricemic mice induced by potassium oxonate. DTME. The extract was administered to the mice daily at doses of 220, 440 and 880 mg/kg for 10 days; allopurinol (5 mg/kg) was given as positive control. Serum and urine levels of uric acid and creatinine were determined by colorimetric method. Simultaneously, protein levels of urate transporter 1 (URAT1) and organic anion transporter 1 (OAT1) in the rat kidney were analyzed by Western blotting. Results: Compared with control, a high dose of DTME inhibited xanthine oxidase (XOD) activity in both serum (18.12 ± 1.33 U/L) and in liver (70.15 ± 5.20 U/g protein) (p < 0.05); decreased levels of serum uric acid (2.04 ± 0.64 mg/L) (p < 0.05), serum creatinine (0.35 ± 0.18 μmol/L) and blood urea nitrogen (BUN) (8.83 ± 0.71 mmol/L) (p < 0.05). Furthermore, the extract increased levels of urine uric acid (38.34 ± 8.23 mg/L), urine creatinine (34.38 ± 1.98 mmol/L), down regulated of URAT1 and up regulated of OAT1 protein expressions (p < 0.05) in the renal tissue of hyperuricemic mice. Conclusion: DTME improves renal dysfunction in rats by regulating renal urate transporters in hyperuricemic rats. This may find therapeutic application in antihypertensive therapy.