5 resultados para Research in Medical Education

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to discuss the role of rationing in medical education. Medical education is expensive and there is a limit to that which governments, funders or individuals can spend on it. Rationing involves the allocation of resources that are limited. This paper discussed the pros and cons of the application of rationing to medical education and the different forms of rationing that could be applied. Even though some stakeholders in medical education might be taken aback at the prospect of rationing, the truth is that rationing has always occurred in one form or another in medical education and in healthcare more broadly. Different types of rationing exist in healthcare professional education. For example rationing may be implicit or explicit or may be based on macro-allocation or micro-allocation decisions. Funding can be distributed equally among learners, or according to the needs of individual learners, or to ensure that overall usefulness is maximised. One final option is to allow the market to operate freely and to decide in that way. These principles of rationing can apply to individual learners or to institutions or departments or learning modes. Rationing is occurring in medical education, even though it might be implicit. It is worth giving consideration to methods of rationing and to make thinking about rationing more explicit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article I deal with extending the ethical principles of research to include communities through the establishment of Community Advisory Boards (CABs). The aim of the project on which this article is based demonstrates the need for protecting communities that participate in research in order to stimulate ethical conduct in research in Malawi. In the article, I provide an overview on the role and functions of CABs. I discuss the establishment of CABs in Malawi and present descriptions of the processes and challenges involved. I conclude by sharing experiences of some of the key lessons learnt from the establishment of CABs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To develop a novel biotechnological method for removing toxic arsenic from two kinds of representative arsenic-containing ores using different mixed mesophilic acidophiles. Methods: Bioleaching of the two types of arsenic-containing ores by mixed arsenic-unadapted Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or mixed arsenic-adapted cultures, were carried out. Arsenic bioleaching ratios in the various leachates were determined and compared. Results: The results showed that the maximum arsenic leaching ratio obtained from realgar in the presence of mixed adapted cultures was 28.6 %. However, the maximum arsenic leaching ratio from realgar in the presence of mixed unadapted strains was only 12.4 %. Besides, maximum arsenic leaching ratios from arsenic-bearing refractory gold ore by mixed adapted strains or unadapted strains were 45.0 and 22.9 %, respectively. Oxidation of these two ores by sulfuric acid was insignificant, as maximum arsenic leaching ratios of realgar and arsenic-bearing refractory gold ore in the absence of any bacterium were only 2.8 and 11.2 %, respectively. Conclusion: Arsenic leaching ratio of realgar and refractory gold ore can be enhanced significantly in the presence of arsenic-adapted mesophilic acidophiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.