2 resultados para RHEOLOGY
em Bioline International
Resumo:
Purpose: To develop and characterize an herbal gel prepared from methanol root extract of Urtica dioica (Urticaceae) (Stinging nettle) for the treatment of arthritis in mice. Methods: A methanol root extract from Urtica dioica was prepared, and a gel was then prepared using Carbopol 934. The prepared gel was subjected to various physical tests (color, appearance, pH, texture, viscosity) and in vivo evaluation, including primary skin irritation, analgesic, and anti-inflammatory tests, in arthritic mice and compared with 2 % indomethacin gel, which was used as standard. Results: The prepared herbal gel was of light gray color with a smooth texture. It showed a pH of 7.1 and a viscosity of 21.2 cps. The gel exhibited pseudoplastic rheology, as evidenced by shear thinning with increased shear rate. It was non-irritating to the skin in primary skin irritation test in mice and showed 55.05 % inhibition of paw edema in a carrageenan-induced hind rat paw edema model, comparable to that of the standard gel (53.93 %), after 24 h. The gel showed 58.21 % analgesia, versus 61.19 % analgesia for the indomethacin gel standard in writhing test. Conclusion: The topical gel from methanol root extract of U. dioica may be an efficacious and safe alternative to non-steroidal anti-inflammatory drugs in the treatment of rheumatoid arthritis but this requires further investigations to ascertain its safety and clinical efficacy.
Resumo:
Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.