2 resultados para RESEARCH GROUPS
em Bioline International
Resumo:
Malnutrition, as a global problem, is mainly caused by low level of mineral elements in staple food (deficient soil). Biofortification is based on selection of genotypes with enhanced concentration of mineral elements in grain, as well as decreased concentration of substances which interfere bioavailability of mineral elements in gut (like phytic acid), and increased content of substances that increase availability (such as β-carotene). The experiment with 51 maize ( Zea mays L.) inbred lines with different heterotic background was set up in order to evaluate chemical composition of grain and to determine the relations between phytic acid (PA), β-carotene, and mineral elements: Mg, Fe, Mn, and Zn. The highest average phytate, β-carotene, Fe, and Mn content was found in grain of inbreds from Lancaster heterotic group. The highest content of Mg was in grain of Independent source and Zn in grain of BSSS group. Increased level of Fe and Mn in Lancaster lines could be partially affected by higher PA content in grain, while increased β-carotene content could improve Mn and Zn availability from grain of BSSS genotypes and Mg availability from Lancaster inbreds. It is important to underline that PA reduction is followed by Zn content increase in grain of Lancaster heterotic group, as well as that variations in Mg, Fe, and Mn contents are independent on PA status in inbreds from Independent source, indicating that the genotypes with higher Mg, Fe and Mn status from this group could serve as favorable source for improved Mg, Fe, and Mn absorption.
Resumo:
Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly injected with three different concentrations (50, 25 and 10 μg/100 μL) of the modified plasmid. Humoral immune response was monitored by enzyme-linked immunosorbent assay (ELISA), while cellular immune response was investigated by analysis of spleen cytokine profile (TNFα, IFN γ and IL2) as well as CD69 expression level in CD4 and CD8 positive cells. Results: In general, the activated CD4 cells showing intracellular cytokines were higher than CD8 positive population of cells (p < 0.05). These findings indicate that the vaccine induced both a humoral and cellular immunity. Cytokine profile also showed high levels of TNFα, IFN γ and IL2 and CD69 expression in the group of animals immunized at a dose of 10 μg when compared to control group (p < 0.05). Conclusion: A 10 μg dose intramuscular injection of the modified DNA-based vaccine encoding HBsAg in mice induces both high humoral and cellular immune responses.