3 resultados para RDS
em Bioline International
Resumo:
Background: Respiratory distress syndrome (RDS) is one of the most common diseases in neonates admitted to NICU. For this important cause of morbidity and mortality in preterm neonates, several treatment methods have been used. To date, non-invasive methods are preferred due to fewer complications. Objectives: Herein, two non-invasive methods of ventilation support are compared: NCPAP vs. NIPPV. Patients and Methods: This is a randomized clinical trial. Premature neonates with less than 34 weeks gestation, suffering from RDS entered the study, including 151 newborns admitted to Vali-Asr NICU during 2012-2013. Most of these patients received surfactant as early rescue via INSURE method and then randomly divided into two NCPAP (73 neonates) and NIPPV (78 neonates) groups. Both early and late complications are compared including extubation failure, hospital length of stay, GI perforation, apnea, intraventricular hemorrhage (IVH) and mortality rate. Results: The need for re-intubation was 6% in NIPPV vs. 17.6% in NCPAP group, which was statistically significant (P = 0.031). The length of hospital stay was 23.92 ± 13.5 vs. 32.61 ± 21.07 days in NIPPV and NCPAP groups, respectively (P = 0.002). Chronic lung disease (CLD) was reported to be 4% in NCPAP and 0% in NIPPV groups (P = 0.035). The most common complication occurred in both groups was traumatization of nasal skin and mucosa, all of which fully recovered. Gastrointestinal perforation was not reported in either group. Conclusions: This study reveals the hospital length of stay, re-intubation and BPD rates are significantly declined in neonates receiving NIPPV as the treatment for RDS.
Resumo:
Background: Respiratory distress syndrome (RDS) is one of the most common causes of neonatal respiratory failure and mortality. The risk of developing RDS decreases with both increasing gestational age and birth weight. Objectives: The aim of this study was to evaluate the value of lung ultrasound in the diagnosis of respiratory distress syndrome (RDS) in newborn infants. Materials and Methods: From March 2012 to May 2013, 100 newborn infants were divided into two groups: RDS group (50 cases) and control group (50 cases). According to the findings of chest x-ray, there were 10 cases of grade II RDS, 15 grade III cases, and 25 grade IV cases in RDS group. Lung ultrasound was performed at bedside by a single expert. The ultrasound indexes observed in this study included pleural line, A-line, B-line, lung consolidation, air bronchograms, bilateral white lung, interstitial syndrome, lung sliding, lung pulse etc. Results: In all of the infants with RDS, lung ultrasound consistently showed generalized consolidation with air bronchograms, bilateral white lung or alveolar-interstitial syndrome, pleural line abnormalities, A-line disappearance, pleural effusion, lung pulse, etc. The simultaneous demonstration of lung consolidation, pleural line abnormalities and bilateral white lung, or lung consolidation, pleural line abnormalities and A-line disappearance co-exists with a sensitivity and specificity of 100%. Besides, the sensitivity was 80% and specificity 100% of lung pulse for the diagnosis of neonatal RDS. Conclusions: This study indicates that using an ultrasound to diagnose neonatal RDS is accurate and reliable too. A lung ultrasound has many advantages over other techniques. Ultrasound is non-ionizing, low-cost, easy to operate, and can be performed at bedside, making this technique ideal for use in NICU.
Resumo:
Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.