2 resultados para Régénération tissulaire
em Bioline International
Resumo:
The rehabilitation of the old cocoa ( Theobroma cacao L. ) farms is one of the major challenges for a sustainable cocoa production. A study was carried out to set up a guide which could be used as a decision making tool for a quick and efficient diagnosis of the old cocoa orchards and to choose the appropriate regeneration option (rehabilitation or replanting). A sample of 90 rehabilitated cocoa farms and of 75 replanted cocoa farms was surveyed in 12 regions representing the three main cocoa producing sectors in the country. Data were collected on the key agronomic characteristics of these cacao farms. These were cocoa variety, farm size, age, yield, planting density, number of shade trees and the level of damages caused by insects and diseases. The results showed that age, planting density and yield were the discriminating criteria of these farms. The average values of these criteria were 25 to 30 years for the age, 800 to 1 000 trees ha-1 for the planting density and 250 to 400 kg ha-1 an-1 for the yield. Based on these criteria and their average values, a decision making guide was designed for the diagnosis of cocoa farms and the choice of regeneration option. According to this guide, old cocoa farms (more than 25 years), degraded and unproductive should be replanted. However, younger farms having planting density and yield higher than the average values above should be rehabilitated.
Resumo:
Pigeon pea ( Cajanus cajan (L.) Millsp.) is a drought tolerant pulse legume, mainly grown for grain in the semi-arid tropics, particularly in Africa. Pigeon pea production in countries like Kenya is faced with a number of challenges, particularly lack of high quality seeds. The objective of this study was to develop an in vitro regeneration system for pigeon pea varieties grown in Kenya, that is amenable to genetic transformation. In vitro regeneration of pigeon pea varieties, KAT 60/8 and ICEAP 00557, commonly grown in Kenya was achieved using leaf explants from in vitro grown seedlings, through callus initiation, followed by shoot and root induction. For callus initiation, MS media supplemented with 0.5-4 mg l-1 2, 4-D and TDZ separately were tested, and IBA at 0.1, 0.5 and 1 mg l-1 was tested for rooting of shoots. Embryogenic calli was obtained on MS containing 2, 4- D; whereas TDZ induced non-embryogenic callus alone or with shoots directly on explants. Indirect shoot regeneration frequency of 6.7 % was achieved using 1 mg l-1 2, 4-D-induced embryogenic callus obtained using KAT 60/8 explants. Whereas direct shoot regeneration frequencies of 20 and 16.7% were achieved using ICEAP 00557 and KAT 60/8 explants, using 0.5 mg l-1 and 2 mg l-1 TDZ, respectively. Optimum rooting was achieved using 0.5 mg l-1 IBA; and up to 92% rooted shoots were successfully established in soil after acclimatisation. Genotype and hormone concentrations had a significant (P<0.05) influence on callus, shoot and root induction. The protocol developed can be optimised for mass production and genetic transformation of KAT 60/8 variety.