3 resultados para Production performance

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorghum [ Sorghum bicolor (L.) Moench] is a major subsistence crop throughout the region of Sahel. With the exception of seeds and labour, no agricultural inputs are in general used in sorghum production since the grain is of a relatively low commercial value and the risk of losing the crop to drought, flooding, etc. is substantial. A meta-analysis of 118 field experiments was carried out to identify conditions in which two protective seed treatments could support a yield increase of sorghum in Burkina Faso. The two treatments were: i) treatment with the pesticide Calthio C (thiram and chlorpyrifos) and ii) treatment with an aqueous extract from the plant Eclipta alba . Both treatments were found to produce a yield increase (Medians: Calthio C +199 kg ha-1, P<2x10-9; E. alba +90.5 kg ha-1 P<4x10-4). A strong relative effect of Calthio C on yield (+36%) was found for field experiments with a low baseline yield. A strong relative effect of E. alba extract on yield (+22%) was found for experiments with a low baseline of emergence. ANOVA of the 118 field tests showed that baseline crop performance (yield and emergence) and the effect of seed treatments were strongly linked to geographical location (twelve different villages included). Roots from sorghum in the village showing the strongest effect of both seed treatments (>40% yield increase) were found to carry a comparatively high load of the infectious ascomycetes: Fusarium equiseti , Macrophomina phaseolina and Curvularia lunata .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased occurrence of drought and dry spells during the growing season have resulted in increased interest in protection of tropical water catchment areas. In Mgeta, a water catchment area in the Uluguru Mountains in Tanzania, water used for vegetable and fruit production is provided through canals from the Uluguru South Forest Reserve. The clearing of forest land for cultivation in the steep slopes in the area is causing severe land degradation, which is threatening the water catchment area, livelihoods, and food security of the local communities, as well as the major population centers in the lowlands. In this paper, the economic performance of a traditional cropping-livestock system with East African (EA)-goats and pigs and extensive vegetable production is compared with a more sustainable and environmentally friendly crop-dairy goat production system. A linear programming (LP) crop-livestock model, maximizing farm income considering the environmental constraints in the area was applied for studying the economic performance of dairy goats in the production system. The model was worked out for the rainy and dry seasons and the analysis was conducted for a basic scenario representing the current situation, based on the variability in the 30 years period from 1982-2012, and in a scenario of both lower crop yields and increased crop variability due to climate change. Data obtained from a sample of 60 farmers that were interviewed using a questionnaire was used to develop and parameterize the model. The study found that in the steep slopes of the area, a crop-dairy goat system with extensive use of grass and multipurpose trees (MPTs) would do better than the traditional vegetable gardening with the EA goat production system. The crop-dairy goat system was superior both in the basic and in a climate change scenario since the yield variation of the grass and MPTs system was less affected compared to vegetable crops due to more tree cover and the use of perennial grasses. However, the goat milk production in the area was constrained by inadequate feeding and lack of an appropriate breeding program. Hence, farmers should enhance goat milk production by supplementing with more concentrate feed and by implementing goat-breeding principles. Moreover, policy measures to promote such a development are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the potential of Lonicera macranthoids Hand. -Mazz. Yulei1 suspension culture system for enhanced production of the main secondary metabolite, chlorogenic acid. Methods: The callus of L. macranthoides Hand.-Mazz. “Yulei1” was suspension cultured in B5 liquid medium supplemented with different plant growth regulators. Biomass accumulation was calculated by weight method and chlorogenic acid production was measured using high performance liquid chromatography (HPLC). HPLC was carried out on C18 analytical column at 35 °C and the detection wavelength was set at 324 nm. Results: The results showed that maximum accumulation of biomass and chlorogenic acid were achieved 15 days after culture growth. The optimized conditions for biomass accumulation and chlorogenic acid production were 50 g/L of inoculum on fresh weight basis, B5 medium supplemented with plant growth regulators, 30 - 40 g/L sucrose and initial medium pH of 5.5. Maximum accumulation of chlorogenic acid and biomass were observed when the culture medium was supplemented with 2.0 mg/L6-BA. Optimal accumulation of chlorogenic acid was observed using combination of hormones 2.0 mg/L 6-Benzyladenine (BA) + 0.5 mg/L2, 4-Dichlorophenoxyacetic acid (2,4-D), while optimal accumulation of biomass was observed with 2.0 mg/L 6-BA + 2.0 mg/L2, 4-D. In addition, phenylalanine also contributed to the synthesis of chlorogenic acid at a concentration > 50 mg/L. Conclusion: Cell suspension cultures of L. macranthoides Hand.-Mazz. “Yulei1” have successfully been established. The findings provide a potential basis for large scale production of chlorogenic acid using cell suspension cultures of L. macranthoides.