2 resultados para PROBE 2`,7`-DICHLOROFLUORESCIN
em Bioline International
Resumo:
Purpose: To evaluate the cytotoxic, anti-inflammatory and antioxidant activities of four different solvent extracts obtained from the aerial parts of Galega officinalis L Methods: The hexane, DCM, methanol and water extracts of G. officinalis were successively obtained by soxhlet extraction method. The cytotoxic activity of the extracts was assessed against human lung carcinoma (A-549), human colorectal adenocarcinoma (HT-29), human brain glioblastoma (U-87), and colon adenocarcinoma (DLD-1) by Resazurine test. The antioxidant activity of extracts were determined by Folin-Ciocalteau, oxygen radical absorbing capacity (ORAC), and 2’.7’-dichlorofluorescin-diacetate (DCFH-DA) cell-based assay while their anti-inflammatory activity was determined by nitric oxide (NO) assay. Results: DCM extract showed strong cytotoxic activity against lung adenocarcinoma and brain glioblastoma cell lines, with IC50 (concentration inhibiting 50 % of cell growth) values of 11 ± 0.4 and 16 ± 3 μg/mL, respectively. The hexane extract showed moderate anticancer activity against the same cell lines (59 ± 13 and 63 ± 16 μg/mL, respectively). DCM extract also showed significant anti-inflammatory activity, inhibiting NO release by 86.7 % at 40 μg/mL in lipopolysaccharide (LPS) - stimulated murine RAW 264.7 macrophages. Of all test extracts, the methanol extract of G. officinalis showed the highest antioxidant activity with 2.33 ± 0.09 μmol Trolox/mg , 7.10 ± 0.9 g tannic acid equivalent (TAE), and IC50 of 44 ± 4 μg/mL. Conclusion: The findings of this study suggest that DCM extract may possess anticancer effect against lung adenocarcinoma and brain glioblastoma, as well as serve as an anti-inflammatory agent.
Resumo:
Purpose: To synthesize and characterize S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- yl)acetohydrazide (3) by refluxing with hydrazine hydrate in methanol. Ring closure reaction of 3 with carbon disulfide and ethanolic potassium hydroxide yielded 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5- thiol (4) which was finally treated with alkyl/aralkyl halides (5a-u) in DMF and NaH to yield Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u). Structural elucidation was done by IR, 1H-NMR and EI-MS techniques Results: 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol (4) was synthesized as the parent molecule and was characterized by IR and the spectrum showed peaks resonating at (cm-1) 2925 (Ar-H), 2250 (S-H ), 1593 (C=N ) and 1527 (Ar C=C ); 1H-NMR spectrum showed signals at δ 11.00 (s, 1H, NH-1ʹ), 7.49 ( br.d, J = 7.6 Hz, 1H, H-4\'), 7.37 (br.d, J = 8.0 Hz, 1H, H-7\'), 7.34 (br.s, 1H, H-2\'), 7.09 (t, J = 7.6 Hz, 1H, H-5\'), 7.00 (t, J = 7.6 Hz, 1H, H-6\') and 4.20 (s, 2H, CH2-10ʹ). EI-MS presented different fragments peaks at m/z 233 (C11H9N3OS)˙+ [M+2]+, 231 (C11H9N3OS)˙+ [M]+, 158 (C10H8NO)+, 156 (C10H8N2)˙+, 130 (C9H8N)+. The derivatives (6a-6u) were prepared and characterized accordingly. Conclusion: S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u) were successfully synthesized.