5 resultados para Oleaginous yeasts

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic biomass is the most abundant renewable source of energy that has been widely explored as second-generation biofuel feedstock. Despite more than four decades of research, the process of ethanol production from lignocellulosic (LC) biomass remains economically unfeasible. This is due to the high cost of enzymes, end-product inhibition of enzymes, and the need for cost-intensive inputs associated with a separate hydrolysis and fermentation (SHF) process. Thermotolerant yeast strains that can undergo fermentation at temperatures above 40°C are suitable alternatives for developing the simultaneous saccharification and fermentation (SSF) process to overcome the limitations of SHF. This review describes the various approaches to screen and develop thermotolerant yeasts via genetic and metabolic engineering. The advantages and limitations of SSF at high temperatures are also discussed. A critical insight into the effect of high temperatures on yeast morphology and physiology is also included. This can improve our understanding of the development of thermotolerant yeast amenable to the SSF process to make LC ethanol production commercially viable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vitro anti-fungal activity of leaf and stem bark of Daniella oliveri Rolfe was investigated against selected yeasts and moulds including dermatophytes. Water and methanol were used to extract the powdered leaf and stem bark using cold infusion. Antimicrobial activity was assessed by agar-well diffusion. Phytochemical analysis was carried out using standard procedures. The plant extracts were active against the test organisms at concentrations ranging from 3.125-100 mg/mL. The methanol extracts were more active than the aqueous extracts with the highest inhibition against the yeasts, Candida albicans and Candida krusei (MIC values of 3.125 mg/mL and 6.25 mg/mL respectively). Epidermophyton floccosum and Trichophyton interdigitale were the least inhibited of all the fungal strains. Phytochemical screening revealed the presence of tannins, anthraquinones, flavonoids, cardiac glycosides, alkaloids and saponins. The anti-fungal activity of Daniella oliveri as shown in this study indicates that the plant has the potential of utilisation in the development of chemotherapeutic agents for the treatment of relevant fungal infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research work entitled: “Microbiological analysis of traditionally fermented milk (Ikivuguto) sold in Kinigi Sector of Musanze District,” was carried out at Higher Learning Institution of Applied Sciences (INES-Ruhengeri) Laboratory of Microbiology located near Volcanoes in the Northern Province of Rwanda. The main objective of this work was to determine the microbiological quality of traditionally fermented milk, which is consumed by Kinigi Center local people. The hypothesis was to analyze if traditionally fermented milk commercialized in Kinigi restaurants contained pathogenic bacteria such as fecal coliforms and Escherichia coli , in addition to staphylococci and yeasts. Milk samples were collected from Kinigi sector and examined in the microbiology laboratory in order to assess the microbiological quality and safety of traditionally fermented milk in rural areas. The samples were analyzed qualitatively and quantitatively for the microbes found in fermented milk sold in Kinigi Center, and the results were as follows: 7.21x107 CFU/ml for total counts; 3.89x107 CFU/ml for Lactobacillus ; 2.77x107 CFU/ml for yeasts; 1.196x105 CFU/ml for total coliforms; 9.63x104 CFU/ml for fecal coliforms and 8.92x103 CFU/ml for staphylococci. Biochemical tests were carried out and the results showed that identified pathogens were E. coli, Providencia alcalifaciens , and the staphylococci group. It was found that fermented milk contained genera and species of Staphylococcus haemolyticus , Staphylococcus aureus , Staphylococcus intermedius , Staphylococcus xylosus and Staphylococcus saprophyticus . Findings showed that the commercial milk samples were cross-contaminated by different pathogens from environment. These contaminations could have been due to improper handling, presence of flies, soil erosion, dust from atmosphere, as well as contaminated milk vessels or pots, stirrers and unpasteurized water. It was concluded that local farmers and milk retailers did not adhere to required hygienic conditions for milk safety. In this regard, the sold traditional fermented milk does not meet health and safety standards because people did not respect good manufacturing practices. The hypothesis and main objective were confirmed, because traditionally fermented milk of Kinigi was cross-contaminated before consumption. Thus, it would be better to train farmers in the areas of product hygiene, sanitation and safety during milking, processing and marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of the ERG11 gene in clinical isolates of Candida known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the effect of ampicillin on rat intestinal microflora and liver in the presence of high carbohydrate and protein diets. Methods: Male Wistar albino rats were divided into four groups. The first group served as the control, the second group was treated with ampicillin (50 mg/kg for 3 weeks) and fed with a standard diet, while the third and fourth groups were treated with the same dose of ampicillin and fed with acarbohydrateand protein-rich diets, respectively, to observe the effect of diet on gut flora and liver. Fecal specimens were collected and used for qualitative determination of gut microbiota composition. Serum hepatospecific markers (AST, ALT and ALP) were estimated. The antioxidant status of liver tissues was estimated for GSH, MDA, GST, LDH and vitamin C l, in addition to sodium and potassium. Results: Administration of orogastric dose of ampicillin for 3 weeks induced inhibition of E.coli, yeasts, total anaerobes, and anaerobic lactobacilli with new growth of P. vulgaris and K. pneumonia. The levels of serum AST, ALT and ALP showed significant (p ˂ 0.05) increase to 163, 112.38 and 115.35 %, respectively in ampicillin-treated animals, compared to control. Also significant (p ˂ 0.05) increase in lipid peroxidation (120 %) and LDH (111 %) coupled with significant (p ˂ 0.05) decrease in glutathione (74.57 %), vitamin C (63.49 %) and glutathione S-transferase (41.51 %) were observed in ampicillintreated groups. No significant variation (p ˂ 0.05) in sodium and potassium levels were found between control and the treated group after 3 weeks of treatment. Conclusion: These results confirm that extended ampicillin therapy disrupts gut flora, which results in liver injury; hence, overuse of antibiotics should be avoid.