3 resultados para Natural health product
em Bioline International
Natural antifouling compound production by microbes associated with marine macroorganisms — A review
Resumo:
In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.
Resumo:
Background: Antibodies are essential part of vertebrates’ adaptive immune system; they can now be produced by transforming plants with antibody-coding genes from mammals/humans. Although plants do not naturally make antibodies, the plant-derived antibodies (plantibodies) have been shown to function in the same way as mammalian antibodies. Methods: PubMed and Google search engines were used to download relevant publications on plantibodies in medical and veterinary fields; the papers were reviewed and findings qualitatively described. Results: The process of bioproduction of plantibodies offers several advantages over the conventional method of antibody production in mammalian cells with the cost of antibody production in plants being substantially lesser. Contrary to what is possible with animal-derived antibodies, the process of making plantibodies almost exclusively precludes transfer of pathogens to the end product. Additionally, plants not only produce a relatively high yield of antibodies in a comparatively faster time, they also serve as cost-effective bioreactors to produce antibodies of diverse specificities. Conclusion: Plantibodies are safe, cost-effective and offer more advantages over animal-derived antibodies. Methods of producing them are described with a view to inspiring African scientists on the need to embrace and harness this rapidly evolving biotechnology in solving human and animal health challenges on the continent where the climate supports growth of diverse plants.
Resumo:
The balance between oxidation and reduction is important for maintaining a healthy biological system. Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) and limited endogenous defense systems, and this imbalance can adversely alter lipids, proteins and DNA, causing a number of human diseases. Thus, exogenous antioxidants that can neutralize the effect of free radicals are needed to diminish the cumulative effects of oxidative damage over human life span. Current research reveals that phenolic compounds in plants possess high antioxidant activity and free radical scavenging capacity and can prevent the body from oxidative damage over human life span. This review focuses on the present understanding of free radicals and antioxidants and their importance in human health and disease. Information about the chemical features of free radicals as well as their deleterious effects on cell structures is reviewed. The chemical structure and anti-oxidative mechanisms of essential polyphenols and their potential health benefits are presented. In addition, the limitation of natural antioxidants and a perspective on likely future trends in this field are also discussed.