2 resultados para NESSIE SAFER

em Bioline International


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is a complex and progressive metabolic disease which is associated with multiple complications. Chronic hyperglycaemia is the defining characteristic of diabetes mellitus. Hyperglycaemia leads to generation of free radicals and induces oxidative stress, which has become the chief factor that leads to diabetic complications. This review supports the use of antioxidant vitamins as therapeutic agents in the management of diabetes mellitus and its complications, and also provides an insight into the potential pharmacological effects of natural antioxidant vitamins in diabetic conditions. These antioxidant vitamins can be used as safe supplements to manage the occurrence and complications of the disease. Selected studies have reported on the beneficial effects of antioxidant vitamins in experimental models. The involvement of oxidative stress in diabetes and its complications has made the use of natural antioxidant vitamins (free radical scavengers) from plants inevitable as they may be very effective and safer in the management of diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.