2 resultados para Minimum Mean Square Error of Intensity Distribution

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Thrombocytopenia has been shown to predict mortality. We hypothesize that platelet indices may be more useful prognostic indicators. Our study subjects were children one month to 14 years old admitted to our hospital. Aim: To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width (PDW) and their ratios can predict mortality in hospitalised children. Methods: Children who died during hospital stay were the cases. Controls were age matched children admitted contemporaneously. The first blood sample after admission was used for analysis. Receiver operating characteristic (ROC) curve was used to identify the best threshold for measured variables and the ratios studied. Multiple regression analysis was done to identify independent predictors of mortality. Results: Forty cases and forty controls were studied. Platelet count, PCT and the ratios of MPV/Platelet count, MPV/PCT, PDW/Platelet count, PDW/PCT and MPV x PDW/Platelet count x PCT were significantly different among children who survived compared to those who died. On multiple regression analysis the ratio of MPV/PCT, PDW/Platelet count and MPV/ Platelet count were risk factors for mortality with an odds ratio of 4.31(95% CI, 1.69-10.99), 3.86 (95% CI, 1.53-9.75), 3.45 (95% CI, 1.38-8.64) respectively. In 67% of the patients who died MPV/PCT ratio was above 41.8 and PDW/Platelet count was above 3.86. In 65% of patients who died MPV/Platelet count was above 3.45. Conclusion: The MPV/PCT, PDW/Platelet count and MPV/Platelet count, in the first sample after admission in this case control study were predictors of mortality and could predict 65% to 67% of deaths accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.