4 resultados para Mineral Density

em Bioline International


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Obesity and asthma are an important public health problem in Saudi Arabia. An increasing body of data supports the hypothesis that obesity is a risk factor for asthma. Asthma appears to be associated with low bone mineral density (BMD) due to long-term use of corticosteroids. Studies recently showed that weight bearing exercise training can increase mineral bone density, reduce weight and improve metabolic control. Objective: The present study aimed to measure the effects of treadmill walking exercises on bone mineral status and inflammatory cytokines in obese asthmatic patients treated with long term intake of corticosteroids. Methods: Eighty obese asthmatic patients of both sexes, their age ranged from 41 to 53 years. Subjects were divided into two equal groups: training group (group A) received aerobic exercise training on treadmill for six months in addition to the medical treatment where, the control group (group B) received only the medical treatment. Results: The results of this study indicated a significant increase in BMD of the lumbar spine & the radius, serum calcium and high density lipoprotein cholesterol (HDL-c) & significant reduction in parathyroid hormone, leptin, tumor necrosis factor– alpha(TNF-α), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), low density lipoprotein cholesterol (LDL-c), triglycerides (TG) and body mass index (BMI) in group (A), while these changes were not significant in group (B).Also; there was a significant difference between both groups at the end of the study. Conclusion: Treadmill walking exercise training is an effective treatment policy to improve bone mineral status and modulates inflammatory cytokines and blood lipids profile in obese asthmatic patients with long term intake of corticosteroids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the therapeutic effect of Rhizoma drynariae extract (RDE) on ovariectomyinduced osteoporosis in rats. Methods: Female Sprague-Dawley rats were randomly assigned to a sham-operated group (control) and five ovariectomy (OVX) subgroups: OVX with vehicle (OVX), OVX with 17ß-estradiol (E2, 25 μg/kg/day), and OVX with RDE doses (40, 80, and 160 mg/kg/day). Daily oral administration of E2 or RDE started 4 weeks after OVX and lasted for 16 weeks. The bone mineral density (BMD) of the L4 vertebrae and right femurs was estimated. The length of each femur was measured with a micrometer gauge, and the center of the diaphysis determined. Three representatives L4 vertebrae were selected to evaluate the trabecular microarchitecture. Serum alkaline phosphatase (ALP), urinary calcium (U-Ca), urinary phosphorus (U-P), urinary creatinine (Cr) and osteocalcin (OC) levels were measured. Results: The study showed that high-dose of RDE significantly inhibited the bone mineral density (BMD) reduction of L4 vertebrae (0.20 ± 0.02 g/cm3, p < 0.05) and femurs (0.18 ± 0.02 g/cm3, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. High-dose of RDE improved morphometric parameters, namely, Tb-N (3.8 ± 0.2 mm, p < 0.05), Tb-Th (0.083 ± 0.011 mm, p < 0.05) and Tb-Sp (0.19 ± 0.01 mm, p < 0.05) in L4 vertebrae significantly. The present study indicates that the administration of RDE at higher doses over a 16-week period can prevent OVX-induced osteoporosis in rats without hyperplastic effects on the uterus. Conclusion: Thus, RDE is a potential natural alternative for postmenopausal osteoporosis treatment in elderly women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the anti-osteoporosis effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) in experimental rats. Method: Female Sprague-Dawley rats were randomly divided into six groups: control group, ovariectomy (OVX) with vehicle group, OVX with 17β-estradiol (E2, 25 μg/kg/day) group, and OVX with AMBE doses (60, 120 and 240 mg/kg/day) groups. Daily oral administration of AMBE or E2 was started 4 weeks after OVX and lasted for 16 weeks. The bone mineral density (BMD) of L4 vertebrae and right femurs was evaluated. The length of each femur was measured with a micrometer, and the center of diaphysis was determined. Three representative L4 vertebrae were selected to evaluate trabecular microarchitecture. Serum alkaline phosphatase (ALP), urinary calcium (U-Ca), urinary phosphorus (UP), urinary creatinine (Cr) and osteocalcin (OC) levels were measured. Results: AMBE dose-dependently inhibited the bone mineral density (BMD) reduction of L4 vertebrae (0.27 ± 0.03 g/cm2, p < 0.05) and femurs (0.23 ± 0.03 g/cm2, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. A higher dosage of AMBE treatment (240 mg/kg/day) increased U-Ca/Cr (0.27 ± 0.03 mmol/mmol), ALP (137.23 ± 16.72 U/L), U-P/Cr (4.18 ± 0.27 mmol/mmol) and OC (8.47 ± 0.26 mmol/L) levels (both p < 0.05). Conclusion: The findings of this study indicate that AMBE prevents OVX-induced osteoporosis in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the therapeutic effects of Cistanche deserticola Ma. extract (CDME) on ovariectomy-induced osteoporosis in rats. Methods: Female Sprague-Dawley rats were randomly assigned to a control group and five ovariectomy (OVX) subgroups, that is, OVX with vehicle (OVX), OVX with 17ß-estradiol (E2, 25 μg/kg/day), and OVX with CDME doses (40, 80, or 160 mg/kg/day). Daily oral administration of E2 or CDME started 4 weeks after OVX and lasted for 16 weeks. Bone mineral density (BMD) of L4 vertebrae and right femur of rats was estimated, The length of each femur was measured, and biochemical analysis of serum and urine specimens were performed. Results: CDME dose-dependently inhibited the reduction in BMD of L4 vertebrae (0.23 ± 0.02 g/cm3, p < 0.05) and femurs (0.20 ± 0.03 g/cm3, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. Conclusion: This study indicates that CDME prevents OVX-induced osteoporosis in rats, and could be used for treating osteoporosis in elderly women.