1 resultado para Mice, Obese

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 with normal rodent pellet, O1 with high fat diet, and E1 with high fat diet plus 20 % inulin. C2, O2, and E2 were fed as follows: C2 with normal rodent pellets for 12 weeks; O2 with high fat diet during 8 weeks and switched to normal rodent pellet during next 4 weeks; and E2 with high fat diet over a period of 8 weeks and switched to normal rodent pellet plus 20 % inulin for 4 weeks. Body weight, serum glucose, triglycerides, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and hepatic α-amylase gene expression were measured. Results: Groups receiving high fat diet showed higher weight (30.71 ± 0.66 g in O2, p < 0.001), nonfasting blood glucose levels (257.69 ± 5.10 mg/dl in O2, p < 0.001), TG (282.15 ± 1.83 mg/dl in O2, (p < 0.001)), and cholesterol levels (335.72 ± 2.23 mg/dl in O2, (p < 0.001)), compared with control. In C2 group, mean body weight was 25.71 ± 0.54 g, non-fasting blood level 161.54 ± 4.48 mg/dl, TG level 214.29 ± 5.54 mg/dl, and cholesterol level 164.29 ±4.57 mg/dl. Compared to obese group, mice receiving inulin showed lower blood glucose levels (223.10 ± 8.7 mg/dl in E2, p < 0.001), body weight (27.86 ± 0.57 g in E2, p < 0.001), TG (232.14 ± 4.02 mg/dl in E2, p < 0.001) and cholesterol (249.97 ± 2.28 in E2, p < 0.001). A slight decrease in hepatic α-amylase gene expression was observed only in E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound.