3 resultados para MICROARCHITECTURE
em Bioline International
Resumo:
Purpose: To investigate the therapeutic effect of Rhizoma drynariae extract (RDE) on ovariectomyinduced osteoporosis in rats. Methods: Female Sprague-Dawley rats were randomly assigned to a sham-operated group (control) and five ovariectomy (OVX) subgroups: OVX with vehicle (OVX), OVX with 17ß-estradiol (E2, 25 μg/kg/day), and OVX with RDE doses (40, 80, and 160 mg/kg/day). Daily oral administration of E2 or RDE started 4 weeks after OVX and lasted for 16 weeks. The bone mineral density (BMD) of the L4 vertebrae and right femurs was estimated. The length of each femur was measured with a micrometer gauge, and the center of the diaphysis determined. Three representatives L4 vertebrae were selected to evaluate the trabecular microarchitecture. Serum alkaline phosphatase (ALP), urinary calcium (U-Ca), urinary phosphorus (U-P), urinary creatinine (Cr) and osteocalcin (OC) levels were measured. Results: The study showed that high-dose of RDE significantly inhibited the bone mineral density (BMD) reduction of L4 vertebrae (0.20 ± 0.02 g/cm3, p < 0.05) and femurs (0.18 ± 0.02 g/cm3, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. High-dose of RDE improved morphometric parameters, namely, Tb-N (3.8 ± 0.2 mm, p < 0.05), Tb-Th (0.083 ± 0.011 mm, p < 0.05) and Tb-Sp (0.19 ± 0.01 mm, p < 0.05) in L4 vertebrae significantly. The present study indicates that the administration of RDE at higher doses over a 16-week period can prevent OVX-induced osteoporosis in rats without hyperplastic effects on the uterus. Conclusion: Thus, RDE is a potential natural alternative for postmenopausal osteoporosis treatment in elderly women.
Resumo:
Purpose: To investigate the anti-osteoporosis effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) in experimental rats. Method: Female Sprague-Dawley rats were randomly divided into six groups: control group, ovariectomy (OVX) with vehicle group, OVX with 17β-estradiol (E2, 25 μg/kg/day) group, and OVX with AMBE doses (60, 120 and 240 mg/kg/day) groups. Daily oral administration of AMBE or E2 was started 4 weeks after OVX and lasted for 16 weeks. The bone mineral density (BMD) of L4 vertebrae and right femurs was evaluated. The length of each femur was measured with a micrometer, and the center of diaphysis was determined. Three representative L4 vertebrae were selected to evaluate trabecular microarchitecture. Serum alkaline phosphatase (ALP), urinary calcium (U-Ca), urinary phosphorus (UP), urinary creatinine (Cr) and osteocalcin (OC) levels were measured. Results: AMBE dose-dependently inhibited the bone mineral density (BMD) reduction of L4 vertebrae (0.27 ± 0.03 g/cm2, p < 0.05) and femurs (0.23 ± 0.03 g/cm2, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. A higher dosage of AMBE treatment (240 mg/kg/day) increased U-Ca/Cr (0.27 ± 0.03 mmol/mmol), ALP (137.23 ± 16.72 U/L), U-P/Cr (4.18 ± 0.27 mmol/mmol) and OC (8.47 ± 0.26 mmol/L) levels (both p < 0.05). Conclusion: The findings of this study indicate that AMBE prevents OVX-induced osteoporosis in rats.
Resumo:
Purpose: To investigate the therapeutic effects of Cistanche deserticola Ma. extract (CDME) on ovariectomy-induced osteoporosis in rats. Methods: Female Sprague-Dawley rats were randomly assigned to a control group and five ovariectomy (OVX) subgroups, that is, OVX with vehicle (OVX), OVX with 17ß-estradiol (E2, 25 μg/kg/day), and OVX with CDME doses (40, 80, or 160 mg/kg/day). Daily oral administration of E2 or CDME started 4 weeks after OVX and lasted for 16 weeks. Bone mineral density (BMD) of L4 vertebrae and right femur of rats was estimated, The length of each femur was measured, and biochemical analysis of serum and urine specimens were performed. Results: CDME dose-dependently inhibited the reduction in BMD of L4 vertebrae (0.23 ± 0.02 g/cm3, p < 0.05) and femurs (0.20 ± 0.03 g/cm3, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. Conclusion: This study indicates that CDME prevents OVX-induced osteoporosis in rats, and could be used for treating osteoporosis in elderly women.