4 resultados para MAIZE STARCH
em Bioline International
Resumo:
Detailed knowledge on genetic diversity among germplasm is important for hybrid maize ( Zea mays L.) breeding. The objective of the study was to determine genetic diversity in widely grown hybrids in Southern Africa, and compare effectiveness of phenotypic analysis models for determining genetic distances between hybrids. Fifty hybrids were evaluated at one site with two replicates. The experiment was a randomized complete block design. Phenotypic and genotypic data were analyzed using SAS and Power Marker respectively. There was significant (p < 0.01) variation and diversity among hybrid brands but small within brand clusters. Polymorphic Information Content (PIC) ranged from 0.07 to 0.38 with an average of 0.34 and genetic distance ranged from 0.08 to 0.50 with an average of 0.43. SAH23 and SAH21 (0.48) and SAH33 and SAH3 (0.47) were the most distantly related hybrids. Both single nucleotide polymorphism (SNP) markers and phenotypic data models were effective for discriminating genotypes according to genetic distance. SNP markers revealed nine clusters of hybrids. The 12-trait phenotypic analysis model, revealed eight clusters at 85%, while the five-trait model revealed six clusters. Path analysis revealed significant direct and indirect effects of secondary traits on yield. Plant height and ear height were negatively correlated with grain yield meaning shorter hybrids gave high yield. Ear weight, days to anthesis, and number of ears had highest positive direct effects on yield. These traits can provide good selection index for high yielding maize hybrids. Results confirmed that diversity of hybrids is small within brands and also confirm that phenotypic trait models are effective for discriminating hybrids.
Resumo:
Safeners are an important tool used to ensure the safe using of herbicide. The objective of this paper was to investigate the protective effect of four 3-dichloroacetyl oxazolidine safeners (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine [R-28725], racemate of 3-dichloroacetyl-2,2-dimethyl-4- ethyl-1,3-oxazolidine, and its two chiral stereoisomers) in reducing the injury caused by imazethapyr. Physiological and biochemical tests were conducted under laboratory condition, by using seed treatment with safeners and soil treatment with imazethapyr, respectively. The interaction of two safeners (R-28725 and R-stereoisomer) and imazethapyr reduced the injury of maize significantly, and also increased glutathione content, activity of glutathione S-transferases, and activity of acetolactate synthase in maize. When induced by R-stereoisomer, the GSH content in root and in shoot increased 100.7% and 73.6%, respectively. When induced by R-28725, the GST activity in vivo increased threefold and the GST activity in vitro more than doubled. The kinetic parameter Vmax of GST in the maize treated with R-28725 and R-stereoisomer increased by 102.2% and 81.9%, respectively, compared with the control. The results also showed that R-28725 and R-stereoisomer induced glutathione S-transferases affinity for the substrate of conjugation reaction significantly.
Resumo:
Malnutrition, as a global problem, is mainly caused by low level of mineral elements in staple food (deficient soil). Biofortification is based on selection of genotypes with enhanced concentration of mineral elements in grain, as well as decreased concentration of substances which interfere bioavailability of mineral elements in gut (like phytic acid), and increased content of substances that increase availability (such as β-carotene). The experiment with 51 maize ( Zea mays L.) inbred lines with different heterotic background was set up in order to evaluate chemical composition of grain and to determine the relations between phytic acid (PA), β-carotene, and mineral elements: Mg, Fe, Mn, and Zn. The highest average phytate, β-carotene, Fe, and Mn content was found in grain of inbreds from Lancaster heterotic group. The highest content of Mg was in grain of Independent source and Zn in grain of BSSS group. Increased level of Fe and Mn in Lancaster lines could be partially affected by higher PA content in grain, while increased β-carotene content could improve Mn and Zn availability from grain of BSSS genotypes and Mg availability from Lancaster inbreds. It is important to underline that PA reduction is followed by Zn content increase in grain of Lancaster heterotic group, as well as that variations in Mg, Fe, and Mn contents are independent on PA status in inbreds from Independent source, indicating that the genotypes with higher Mg, Fe and Mn status from this group could serve as favorable source for improved Mg, Fe, and Mn absorption.
Resumo:
Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.