2 resultados para Liver Cirrhosis, Experimental -- chemically induced

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effect of ampicillin on rat intestinal microflora and liver in the presence of high carbohydrate and protein diets. Methods: Male Wistar albino rats were divided into four groups. The first group served as the control, the second group was treated with ampicillin (50 mg/kg for 3 weeks) and fed with a standard diet, while the third and fourth groups were treated with the same dose of ampicillin and fed with acarbohydrateand protein-rich diets, respectively, to observe the effect of diet on gut flora and liver. Fecal specimens were collected and used for qualitative determination of gut microbiota composition. Serum hepatospecific markers (AST, ALT and ALP) were estimated. The antioxidant status of liver tissues was estimated for GSH, MDA, GST, LDH and vitamin C l, in addition to sodium and potassium. Results: Administration of orogastric dose of ampicillin for 3 weeks induced inhibition of E.coli, yeasts, total anaerobes, and anaerobic lactobacilli with new growth of P. vulgaris and K. pneumonia. The levels of serum AST, ALT and ALP showed significant (p ˂ 0.05) increase to 163, 112.38 and 115.35 %, respectively in ampicillin-treated animals, compared to control. Also significant (p ˂ 0.05) increase in lipid peroxidation (120 %) and LDH (111 %) coupled with significant (p ˂ 0.05) decrease in glutathione (74.57 %), vitamin C (63.49 %) and glutathione S-transferase (41.51 %) were observed in ampicillintreated groups. No significant variation (p ˂ 0.05) in sodium and potassium levels were found between control and the treated group after 3 weeks of treatment. Conclusion: These results confirm that extended ampicillin therapy disrupts gut flora, which results in liver injury; hence, overuse of antibiotics should be avoid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brain is exposed throughout life to oxidative stress, and certain diseases of the brain and nervous system are thought to involve free radical processes and oxidative damage. This study is aimed at evaluating the effect of kolaviron on kolanut-induced oxidative stress in developing rat brain. Twenty-five adult pregnant Wistar rats weighing between 160 and 180g were used for the experiment. They were randomly divided into five groups of five animals each. The animals were fed with standard diets of mice cubes and water provided ad libitum. The control rats received water and cornoil, while the experimental animals received 200 mg/kg body weight of kolanut (kn), 200 mg/kg of kolaviron (kv), and 200 mg/kg body weight of vitamin E which served as a standard antioxidant with cornoil as vehicle orally in pre- and post-natal life. After birth, gross morphometry and behavioural changes of the pups of days 1, 7, 14, 21 and 28 postpartum were evaluated. Blood samples were collected from pups of day 21 for hematological, liver and renal function analyses, while the brains of pups of day 21 postpartum were preserved in phosphate buffer at a temperature of 4oC and pH 7.4 for biochemical analysis. There were significant alterations in the gross morphometry and behavioural parameters studied in the treated animals compared with the control at p< 0.05. There were elevated levels of RBC, WBC and platelets in the treated group compared with the control at p< 0.05. However, no significant change was observed in the PCV, Hb, liver and renal function parameters studied at p>0.05. A non-significant increase in levels of malondialdehyde, MDA, a bye-product of lipid peroxidation in the kolanut group was observed. However, administration of kolaviron and vitamin E non-significantly (p>0.05) reversed these changes. In conclusion, maternal consumption of kolanut induced mild oxidative stress and the administration of kolaviron and vitamin E decreased the rate at which kolanut induced oxidative stress in developing rat brain.