3 resultados para Laboratory analysis
em Bioline International
Assessment of laboratory test utilization for HIV/AIDS care in urban ART clinics of Lilongwe, Malawi
Resumo:
Background The 2011 Malawi HIV guidelines promote CD4 monitoring for pre-ART assessment and considering HIVRNA monitoring for ART response assessment, while some clinics used CD4 for both. We assessed clinical ordering practices as compared to guidelines, and determined whether the samples were successfully and promptly processed. Methods We conducted a retrospective review of all patients seen in from August 2010 through July 2011,, in two urban HIV-care clinics that utilized 6-monthly CD4 monitoring regardless of ART status. We calculated the percentage of patients on whom clinicians ordered CD4 or HIVRNA analysis. For all samples sent, we determined rates of successful labprocessing, and mean time to returned results. Results Of 20581 patients seen, 8029 (39%) had at least one blood draw for CD4 count. Among pre-ART patients, 2668/2844 (93.8%) had CD4 counts performed for eligibility. Of all CD4 samples sent, 8082/9207 (89%) samples were successfully processed. Of those, mean time to processing was 1.6 days (s.d 1.5) but mean time to results being available to clinician was 9.3 days (s.d. 3.7). Regarding HIVRNA, 172 patients of 17737 on ART had a blood draw and only 118/213 (55%) samples were successfully processed. Mean processing time was 39.5 days (s.d. 21.7); mean time to results being available to clinician was 43.1 days (s.d. 25.1). During the one-year evaluated, there were multiple lapses in processing HIVRNA samples for up to 2 months. Conclusions Clinicians underutilize CD4 and HIVRNA as monitoring tools in HIV care. Laboratory processing failures and turnaround times are unacceptably high for viral load analysis. Alternative strategies need to be considered in order to meet laboratory monitoring needs.
Resumo:
A research work entitled: “Microbiological analysis of traditionally fermented milk (Ikivuguto) sold in Kinigi Sector of Musanze District,” was carried out at Higher Learning Institution of Applied Sciences (INES-Ruhengeri) Laboratory of Microbiology located near Volcanoes in the Northern Province of Rwanda. The main objective of this work was to determine the microbiological quality of traditionally fermented milk, which is consumed by Kinigi Center local people. The hypothesis was to analyze if traditionally fermented milk commercialized in Kinigi restaurants contained pathogenic bacteria such as fecal coliforms and Escherichia coli , in addition to staphylococci and yeasts. Milk samples were collected from Kinigi sector and examined in the microbiology laboratory in order to assess the microbiological quality and safety of traditionally fermented milk in rural areas. The samples were analyzed qualitatively and quantitatively for the microbes found in fermented milk sold in Kinigi Center, and the results were as follows: 7.21x107 CFU/ml for total counts; 3.89x107 CFU/ml for Lactobacillus ; 2.77x107 CFU/ml for yeasts; 1.196x105 CFU/ml for total coliforms; 9.63x104 CFU/ml for fecal coliforms and 8.92x103 CFU/ml for staphylococci. Biochemical tests were carried out and the results showed that identified pathogens were E. coli, Providencia alcalifaciens , and the staphylococci group. It was found that fermented milk contained genera and species of Staphylococcus haemolyticus , Staphylococcus aureus , Staphylococcus intermedius , Staphylococcus xylosus and Staphylococcus saprophyticus . Findings showed that the commercial milk samples were cross-contaminated by different pathogens from environment. These contaminations could have been due to improper handling, presence of flies, soil erosion, dust from atmosphere, as well as contaminated milk vessels or pots, stirrers and unpasteurized water. It was concluded that local farmers and milk retailers did not adhere to required hygienic conditions for milk safety. In this regard, the sold traditional fermented milk does not meet health and safety standards because people did not respect good manufacturing practices. The hypothesis and main objective were confirmed, because traditionally fermented milk of Kinigi was cross-contaminated before consumption. Thus, it would be better to train farmers in the areas of product hygiene, sanitation and safety during milking, processing and marketing.
Resumo:
Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.