2 resultados para Jack bean

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quality snap bean ( Phaseolus vulgaris L. ) can be produced under rain-fed conditions, provided that adequate moisture is available. However, drought may occur at any stage of growth of snap bean. The objective of this study was to evaluate the effect of drought stress at different growth stages on pod physical quality and nutrient concentrations. An experiment was conducted at the Horticulture Greenhouse, Hawassa University in Ethiopia. Drought stress (50% of field capacity [FC]) was applied at the unfolding of the fourth trifoliate leaf, flowering and pod formation, against a control with no drought stress. The drought stress treatments and eight cultivars were arranged as a factorial experiment in a completely randomised design, with three replications. Drought stress (50% FC) during reproductive stages significantly (P<0.05) reduced pod texture, appearance, and pod curvature. Drought stress increased protein and zinc concentrations by 41 and 15%, respectively; but reduced iron concentration by 15% in snap bean pods. All the tested cultivars had relatively similar responses to drought stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nutritional and amino acid analysis of raw and fermented seeds of Parkia biglobosa were carried out. Parameters investigated include moisture, crude protein, crude fat, ash, crude fibre and mineral contents; and the effect of the degree of fermentation on these parameters was also investigated. The amino acid compositions of all the samples were evaluated and amino acid quality determined by calculating amino acid scores and the predicted protein efficiency ratio (P-PER). Results showed that the proximate composition was significantly affected by fermentation, although there was little difference between the parameters for the partially fermented and completely fermented samples. Based on dry matter percentage, protein content was in the 39.77 – 43.74 % range while crude fibre ranged between 5.55 – 7.42 %. The ash content was lowest in the raw sample (2.34 %), while the fermented samples had ash contents between 4.27 and 8.33 % for the fully fermented and the partially fermented seeds, respectively. The fat content increased from 8.65 % in the raw seed to 24.4 % and 27.6 % for the partially and completely fermented samples, respectively. Results of the amino acid analysis showed that the partially fermented sample had the lowest quantities of all amino acids determined and had lysine as the limiting amino acid, whereas the raw and completely fermented samples had very similar amino acid profile with amino acid scores of 100, indicating that there are no limiting amino acids. All the samples were rich in essential amino acids. The P-PER also showed that the partially fermented sample had the lowest protein efficiency while the raw seed had the highest. Mineral contents generally increased from the raw, through the partially fermented, to the completely fermented seeds and results showed the samples to be good sources of potassium (K), calcium (Ca), manganese (Mn) and copper (Cu) in addition to being complementary sources of other metals. Locust bean seed does not accumulate lead and is, therefore, safe for consumption without the potential of food poisoning.