2 resultados para Intrauterine Growth Restriction (IUGR)

em Bioline International


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Neonates and infants with hypomagnesemia present with seizures and psychomotor delay. Objectives: The present study evaluated the changes in magnesium (Mg) levels and factors associated with these in the first three days of life. Materials and Methods: We monitored 50 clinically asymptomatic neonates; they were not given any magnesium supplements even if they had hypomagnesemia at baseline. The variables analysed were: serum Mg; gestational age; birth weight; length; and the ponderal index. We used random effects (RE) models for longitudinal analysis of these data. Results: The mean standard deviation (SD) gestational age was 36.3 (3.6) weeks and the mean (SD) weight was 2604.2 (754.4) grams. About 31% of the neonates had hypomagnesemia (< 1.6 mg/dL) on day one; however, all had normal magnesium levels by day three of life (P < 0.001). At birth, after adjusting for intrauterine growth retardation status (IUGR), serum Mg levels were lower by 0.0097 mg/dL (95% CI: -0.019 to -0.0003) per 100 grams increase in weight of the neonate. After adjusting for IUGR status, the mean increase in the serum Mg levels was 0.14 mg/dL (95% confidence intervals [CI]: 0.10 to 0.18) per day. The per-day increase in magnesium levels was significantly higher in low birth weight babies (0.10, 95% CI: 0.01 to 0.18) compared with normal birth weight babies. Conclusions: Asymptomatic neonates may have a high prevalence of hypomagnesemia; however, the levels become normal without any magnesium supplementation. Even though regular monitoring of magnesium levels is useful, no supplements are required - particularly in clinically asymptomatic neonates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infants with fetal growth retardation (FGR) are prone to intestinal disorders. Objectives: Aim of the study was to determine the role of mucosal defense ability in formation of gut injury in infants with FGR. Materials and Methods: 44 premature infants who were admitted to the Neonatal Intensive Care Unit were divided into two groups: 20 infants with FGR (FGR group) and 24 appropriate-for-gestational age newborns (AGA group). Control group consisted of 22 premature infants who were delivered after uncomplicated pregnancy. Gut barrier function was evaluated by detecting serum intestinal trefoil factor (ITF) and intestinal fatty acid binding protein (IFABP). The level of serum IFABP and ITF was measured by using ELISA method. Results: FGR group showed significantly higher ITF concentration than AGA group on the first days of life (P ˂ 0.01). High level of ITF in the FGR group significantly declines up to 7th - 10th day of life (P ˂ 0.01). This reduction was accompanied by increase of IFABP which is a marker of ischemic intestinal mucosal injury. Correlation analyses showed that ITF had a negative correlation with IFABP. Conclusions: Infants with fetal growth retardation are characterized by a high level of ITF on the first days of life. This protects intestinal mucosa under hypoxic conditions. Its subsequent decline accompanied by an increase of IFABP reflects the depletion of Goblet cells to secret ITF causing damage to the integrity of intestinal mucosal barrier.