2 resultados para Inositol 1,4,5-trisphosphate (IP3)
em Bioline International
Resumo:
Purpose: To synthesize a series of analogues of 1,3,4-oxadiazole and to evaluate their antibacterial activity. Methods: Ethyl piperidin-4-carboxylate (1) was mixed with 4-toluenesulfonyl chloride (2) in benignant conditions to yield ethyl 1-(4-toluenesulfonyl)piperidin-4-carboxylate (3) and then 1-(4- toluenesulfonyl)piperidin-4-carbohydrazide (4). Intermolecular cyclization of 4 into 2-mercapto-5-(1-(4- toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole (5) was obtained on reflux with CS2 in the presence of KOH. Molecule 5 was stirred with alkyl halides, 6a-i, in DMF in the presence of LiH to synthesize the final compounds, 7a-i. The structures of these molecules were elucidated by Fourier transform infra-red (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) and electron impact mass spectrometry (EI-MS). Antibacterial activity was evaluated against five bacterial strains, namely, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, with ciprofloxacin used as standard antibacterial agent. Results: Out of nine synthesized derivatives, compound 7a was the most active against three bacterial strains, S. typhi, E. coli and P. aeruginosa, with minimum inhibitory concentration (MIC) of 9.11 ± 0.40, 9.89 ± 0.45 and 9.14 ± 0.72 μM, respectively, compared with 7.45 ± 0.58, 7.16 ± 0.58 and 7.14 ± 0.18 μM, respectively, for the reference standard (ciprofloxacin). Similarly, compounds 7a - 7c showed relatively good antibacterial activity against B. subtilis strain while compound 7e - 7g revealed good results against S. typhi bacterial strain. Conclusion: The results indicate that S-substituted derivatives of the parent compound are more effective antibacterial agents than the parent compound, even with minor differences in substituents
Resumo:
Purpose: To study the structure-activity relationships of synthetic multifunctional sulfides through evaluation of lipoxygenase and anti-bacterial activities. Methods: S-substituted derivatives of the parent compound 5-(1-(4-chlorophenylsulfonyl) piperidin-3- yl)-1, 3, 4-oxadiazole-2-thiol were synthesized through reaction with different saturated and unsaturated alkyl halides in DMF medium, with NaH catalyst. Spectral characterization of each derivative was carried out with respect to IR, 1H - NMR, 13C - NMR and EI - MS. The lipoxygenase inhibitory and antibacterial activities of the derivatives were determined using standard procedures. Results: Compound 5e exhibited higher lipoxygenase inhibitory potential than the standard (Baicalein®), with % inhibition of 94.71 ± 0.45 and IC50 of 20.72 ± 0.34 μmoles/L. Compound 5b showed significant antibacterial potential against all the bacterial strains with % inhibition ranging from 62.04 ± 2.78, 69.49 ± 0.41, 63.38 ± 1.97 and 59.70 ± 3.70 to 78.32 ± 0.41, while MIC ranged from 8.18 ± 2.00, 10.60 ± 1.83, 10.84 ± 3.00, 9.81 ± 1.86 and 11.73 ± 5.00 μmoles/L for S. typhi, E. coli, P. aeruginosa, B. subtilis and S. aureus, respectively. Compounds 5d, 5e and 5g showed good antibacterial activity against S. typhi and B. subtilis bacterial strains. Conclusion: The results suggest that compound 5e bearing n-pentyl group is a potent lipoxygenase inhibitor, while compound 5b with n-propyl substitution is a strong antibacterial agent. In addition, compounds 5d, 5e and 5g bearing n-butyl, n-pentyl and n-octyl groups, respectively, are good antibacterial agents against S. typhi and B. subtilis.