6 resultados para Infant newborn
em Bioline International
Resumo:
Background: Noninvasive transcutaneous carbon dioxide monitoring has been shown to be accurate in infants and children, limited data are available to show the usefulness and limitations of partial transcutaneous carbon dioxide tension (PtCO2) value. Objectives: The current study prospectively determines the effectiveness and accuracy of PtCO2 measurements in newborns. Materials and Methods: Venous blood gas sampling and monitoring of the PtCO2 level (TCM TOSCA, Radiometer) were done simultaneously. All measurements are performed on mechanically ventilated infants. Partial venous carbon dioxide tension (PvCO2) values divided into three groups according to hypocapnia (Group 1: < 4.68 kPa), normocapnia (Group 2: 4.68–7.33 kPa), hypercapnia (Group 3: > 7.33 kPa) and then PvCO2 and PtCO2 data within each group were compared separately. Results: A total of 168 measurements of each PvCO2 and PtCO2 data were compared in three separated groups simultaneously (13 in Group 1, 118 in Group 2, and 37 in Group 3). A bias of more than ± 0.7 kPa was considered unacceptable. PtCO2 was related to PvCO2 with acceptable results between the two measurements in hypocapnia (mean difference 0.20 ± 0.19 kPa) and normocapnia (0.002 ± 0.30 kPa) groups. On the other hand in hypercapnia group PtCO2 values were statistically significant (P < 0.001) and lower than PvCO2 data (mean difference 0.81 ± 1.19 kPa) Conclusions: PtCO2 measurements have generally good agreement with PvCO2 in hypocapnic and normocapnic intubated infants but there are some limitations especially with high level of CO2 tension. Monitoring of PtCO2 is generally a useful non-invasive indicator of PvCO2 in hypocapnic and normocapnic infants.
Resumo:
Background: Nosocomial sepsis (NS) in newborns (NBs) is associated with high mortality rates and low microbial recovery rates. To overcome the latter problem, new techniques in molecular biology are being used. Objectives: To evaluate the diagnostic efficacy of SeptiFast test for the diagnosis of nosocomial sepsis in the newborn. Materials and Methods: 86 blood specimens of NBs with suspected NS (NOSEP-1 Test > 8 points) were analyzed using Light Cycler SeptiFast (LC-SF) a real-time multiplex PCR instrument. The results were analyzed with the Roche SeptiFast Identification Software. Another blood sample was collected to carry out a blood culture (BC). Results: Sensitivity (Sn) and specificity (Sp) of 0.69 and 0.65 respectively, compared with blood culture (BC) were obtained for LC-SF. Kappa index concordance between LC-SF and BC was 0.21. Thirteen (15.11%) samples were BC positive and 34 (31.39%) were positive with LC-SF tests. Conclusions: Compared with BC, LC-SF allows the detection of a greater number of pathogenic species in a small blood sample (1 mL) with a shorter response time.
Resumo:
Background: The microflora hypothesis may be the underlying explanation for the growth of inflammatory disease. In addition to many known affecting factors, knowing the gut microbiota of healthy newborns can help to understand the gut immunity and modulate it. Objectives: This study examined the microbiota of healthy newborns from urban regions. Patients and Methods: We enrolled 128 full-term newborns, born at Seoul St. Mary and St. Paul hospital from January 2009 to February 2010. All 143 samples of feces were cultivated in six culture plates to determine the amounts of total bacteria, anaerobes, gram-positive bacteria, coliforms, lactobacilli, and bifidobacteria. The samples were evaluated with a bivariate correlation between coliforms and lactobacilli. Terminal restriction fragment length polymorphism (T-RFLP) analysis with HhaI and MspI and a clustering analysis were performed for determination of diversity. Results: Bacteria were cultured in 61.5% of feces in the following order: anaerobes, gram-positive bacteria, lactobacilli, coliform, and bifidobacteria. The growth of total bacteria and lactobacilli increased in feces defecated after 24 hours of birth (P < 0.001, P = 0.008) and anaerobes decreased (P = 0.003). A negative correlation between the growth of lactobacilli and coliforms was found (r = -463, P < 0.001). Conclusions: This study confirms that bacterial colonization of healthy newborns born in cities is non-sterile, but has early diversification and inter-individuality.
Resumo:
Background: Respiratory distress syndrome (RDS) is one of the most common causes of neonatal respiratory failure and mortality. The risk of developing RDS decreases with both increasing gestational age and birth weight. Objectives: The aim of this study was to evaluate the value of lung ultrasound in the diagnosis of respiratory distress syndrome (RDS) in newborn infants. Materials and Methods: From March 2012 to May 2013, 100 newborn infants were divided into two groups: RDS group (50 cases) and control group (50 cases). According to the findings of chest x-ray, there were 10 cases of grade II RDS, 15 grade III cases, and 25 grade IV cases in RDS group. Lung ultrasound was performed at bedside by a single expert. The ultrasound indexes observed in this study included pleural line, A-line, B-line, lung consolidation, air bronchograms, bilateral white lung, interstitial syndrome, lung sliding, lung pulse etc. Results: In all of the infants with RDS, lung ultrasound consistently showed generalized consolidation with air bronchograms, bilateral white lung or alveolar-interstitial syndrome, pleural line abnormalities, A-line disappearance, pleural effusion, lung pulse, etc. The simultaneous demonstration of lung consolidation, pleural line abnormalities and bilateral white lung, or lung consolidation, pleural line abnormalities and A-line disappearance co-exists with a sensitivity and specificity of 100%. Besides, the sensitivity was 80% and specificity 100% of lung pulse for the diagnosis of neonatal RDS. Conclusions: This study indicates that using an ultrasound to diagnose neonatal RDS is accurate and reliable too. A lung ultrasound has many advantages over other techniques. Ultrasound is non-ionizing, low-cost, easy to operate, and can be performed at bedside, making this technique ideal for use in NICU.