4 resultados para In vitro studies
em Bioline International
Resumo:
Purpose: To develop docetaxel (DTX)- and alendronate (ALN)-loaded, chitosan (CS)-conjugated polylactide- co-glycolide (PLGA) nanoparticles (NPs) to increase therapeutic efficacy in osteosarcoma cells. Methods: Drug-loaded PLGA NPs were prepared by nanoprecipitation and chemically conjugated by the carboxylic group of PLGA to the amine-bearing CS polymer. The nanocarrier was characterized by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry as well as by in vitro drug release and cell culture studies. Results: NP size was within the tumour targeting range (~200 nm) with an effective positive charge (20 mV), thus increasing cellular uptake efficiency. Morphological analysis revealed clear spherical particles with uniform dispersion. The NPs exhibited identical sustained release kinetics for both DTX and ALN. CS-conjugated PLGA with dual-drug-loaded (DTX and AL) NPs showed typical time-dependent cellular uptake and also displayed superior cytotoxicity in MG-63 cells compared with blank NPs, which were safe and biocompatible. Conclusion: Combined loading of DTX and ALN in NPs increased the therapeutic efficacy of the formulation for osteosarcoma treatment, thus indicating the potential benefit of a combinatorial drug regimen using nanocarriers for effective treatment of osteosarcoma.
Resumo:
Purpose: To investigate the anti-hyperprolactinemic activity of Prunella vulgaris L. extract (PVE) in vivo and in vitro. Methods: Rats were given intraperitoneal (i. p.) metoclopramide (MCP, 150 mg/kg daily) for 10 days to prepare hyperprolactinemia (hyperPRL) model. Bromocriptine was used as positive control drug. High (5.6 g/kg), medium (2.8 g/kg) and low (1.4 g/kg) doses of PVE were administered to hyperPRL rats. The effect of PVE on serum prolactin (PRL), estradiol (E2), progesterone (PGN), follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were investigated in the rats. MMQ cells derived from rat pituitary adenoma cells and GH3 cells from rat pituitary lactotropictumoral cells were used for in vitro experiments. The effect of PVE on PRL secretion were studied in MMQ cells and GH3 cells respectively. Results: Compared with the control group (446.21 ± 32.43 pg/mL), high (219.23 ± 10.62 pg/mL) and medium (245.47 ± 13.52 pg/mL) reduced PRL level of hyperPRL rats significantly (p 0.05). In MMQ cells, treatment with 5 mg/mL PVE or 10 mg/mL PVE) significantly suppressed PRL secretion and synthesis at 24h compared with controls (p < 0.01). Consistent with D2- action, PVE did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D2 receptor expression, compared with controls. Conclusion: PVE showed anti-hyperPRL activity and can potentially be used for the treatment of hyperprolactinemi, but further studies are required to ascertain this
Resumo:
Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.
Resumo:
Objective: Our objective was to systematically review the published observational research related to the role of oxidative-nitrosative stress in pathogenesis of dengue. Methods: We searched electronic databases (PubMed, EMBASE, The COCHRANE library, ScienceDirect, Scopus, SciELO, LILACS via Virtual Health Library, Google Scholar) using the term: dengue, dengue virus, severe dengue, oxidative stress, nitrosative stress, antioxidants, oxidants, free radicals, oxidized lipid products, lipid peroxides, nitric oxide, and nitric oxide synthase. Articles were selected for review by title and abstract excluding letter, review, in vivo and in vitro studies, and duplicates studies. Selected articles were reviewed for study design, original purposes, sample size, main outcomes, methods, and oxidative-nitrosative stress markers values. Results: In total, 4,331 non-duplicates articles were identified from electronic databases searches, of which 16 were eligible for full text searching. Data from the observational studies originate from Asian countries (50%; 8/16), South American countries (31.2%; 5/16), and Central America and the Caribbean countries (18.8%; 3/16). Casecontrol study was the type of design most common in researches reviewed. The 1997 World Health Organization (WHO) dengue case classification criteria were used in all studies included in this review. Conclusions: Based on published data found in peer-reviewed literature, oxidative and nitrosative stress are demonstrated by changes in plasma levels of nitric oxide, antioxidants, lipid peroxidation and protein oxidation markers in patients with dengue infection. Additionally, elevated serum protein carbonyls and malondialdehyde levels appear to be associated with dengue disease severity.