2 resultados para INTENSIVE GLUCOSE CONTROL
em Bioline International
Resumo:
Purpose: To enhance the solubility and dissolution rate of the antidiabetic drug repaglinide by solid dispersion (SD) technique Method: The solid dispersion of repaglinide was prepared by solvent evaporation method using the hydrophilic carrier, polyethylene glycol 4000 (PEG 4000) in three drug:PEG 4000 ratios (1:1, 1:3, 1:5). For comparison, physical mixtures of repaglinide and PEG 4000 in the same ratios were also prepared. The formulations were characterized by Fourier transformed infrared spectroscopy (FTIR), x-ray diffractometry (XRD) and differential scanning colorimetry (DSC). Phase solubility study of pure repaglinide, physical mixture and solid dispersion was performed in distilled water. Dissolution studies were carried out in pH 7.4 phosphate buffer. Results: DSC and XRD results indicate that repaglinide exists in amorphous form in solid dispersion. FT-IR analysis demonstrated the presence of intermolecular hydrogen bonding between repaglinide and PEG 4000 in the solid dispersion. The solubility of pure repaglinide was enhanced from 22.5± 5.0 to 235.5± 5.0 µg/mL in distilled water at 37 0C. Rapid burst release (80 - 86 %) from the solid dispersion formulations was observed within 15 min. Conclusion: The solubility and dissolution rate of repaglinide are enhanced by formulating SDs of repaglinide with PEG 4000. This will likely lead to increase in bioavailability which would be beneficial for better glucose control in diabetic patients.
Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study
Resumo:
Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI,, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.