3 resultados para Genealogy--Yemen

em Bioline International


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazilian scientists have been contributing to the protozoology field for more than 100 years with important discoveries of new species such as Trypanosoma cruzi and Leishmania spp. In this work, we used a Brazilian thesis database (Coordination for the Improvement of Higher Education Personnel) covering the period from 1987-2011 to identify researchers who contributed substantially to protozoology. We selected 248 advisors by filtering to obtain researchers who supervised at least 10 theses. Based on a computational analysis of the thesis databases, we found students who were supervised by these scientists. A computational procedure was developed to determine the advisors’ scientific ancestors using the Lattes Platform. These analyses provided a list of 1,997 researchers who were inspected through Lattes CV examination and allowed the identification of the pioneers of Brazilian protozoology. Moreover, we investigated the areas in which researchers who earned PhDs in protozoology are now working. We found that 68.4% of them are still in protozoology, while 16.7% have migrated to other fields. We observed that support for protozoology by national or international agencies is clearly correlated with the increase of scientists in the field. Finally, we described the academic genealogy of Brazilian protozoology by formalising the “forest” of Brazilian scientists involved in the study of protozoa and their vectors over the past century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: We describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: we describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.