4 resultados para GROUP-II KIMBERLITES
em Bioline International
Resumo:
Objective: Coronary artery diseases including atherosclerosis is considered as commonest problem worldwide. Ergosterols are the main components of vegetable oils and nuts. The objective of this study was to evaluate the potential hypoplipidemic and hypocholesterolemic effects of ergosterol in combination with niacin in rats fed high fat diet (HFD). Methods: Eighty male albino rats were included in this study divided into two main groups: Group I: Normal rats fed standard diet treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/kg b.w) or both. Group II; rats fed HFD treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/kg b.w) or both The feeding and treatment lasted for 8 weeks. Results: A significant elevation in the levels of total cholesterol, triacylglycerol, VLDL-c, LDL-c and atherogenic factor (p<0.001) in rats fed on HFD compared with normal control while HDL-c was significantly reduced in HFD rats compared with control group. Supplementation of diet with niacin or ergosterol or combined exerts improvement in the studied parameters by lowering triacylglycerol, total cholesterol, LDL-c and atherogenic factor and elevate HDL-c near to the value of control. Niacin combined with ergosterol were effective in the reduction of hydroxy methyl glutaryl-CoA reducatase (HMGCoA) compared with control (p<0.001). The combined effect was more potent than individual alone. Conclusion: Utilization of niacin and ergosterol may prevent the hypercholesterolemia and incidence of coronary heart diseases. These functional foods act as nutriceutical as dyslipidemics.
Resumo:
Background: D-Lactate is normally present in the blood of humans at nanomolar concentrations due to methylglyoxal metabolism; millimolar D-lactate concentrations can arise due to excess gastrointestinal microbial production. Objectives: To examine the levels of plasma D-lactate in the necrotizing enterocolitis in premature infants. Patients and Methods: 128 premature infants were divided into control (group I, n = 69), feeding intolerance (group II, n = 42) and NEC (group III, n = 27) groups. Plasma D-lactate levels were measured at the onset of feeding intolerance or NEC and at weeks 2-3 in control infants (group I) by ELISA. Data were analyzed using descriptive statistics, non-parametric tests and Student’s t-test. Results: In groups I, II, III, median birth weights were 1845.7 ± 267.5 g, 1913.1 ± 306.5 g, and 1898.4 ± 285.3 g, median gestational ages were 34.3 ± 1.7 weeks, 33.9 ± 2.2 weeks and 35.1 ± 2.6 weeks, ages of sampling were 12.3 ± 2.9 days, 14.6 ± 3.7 days and 15.1 ± 1.8 days, respectively. The differences of median birth weights, median gestational ages and ages of sampling were not statistically significant (P > 0.05). The plasma D-lactate levels in groups I, II, III were 3.6 ± 1.9 μg/mL, 12.7 ± 8.3 μg/mL, and 35.4 ± 29.1 μg/mL, respectively, group III had higher plasma D-lactate level than groups I, II, and the difference among these groups was significant (x2 = 21.6, P < 0.01). Conclusions: Plasma D-lactate significantly increased early in NEC. Plasma D-lactate levels were associated with extensive disease in NEC infants. Therefore, it could be used as a diagnosis indicator in the early stage of NEC.
Resumo:
Background: Prolonged empiric antibiotics therapy in neonates results in several adverse consequences including widespread antibiotic resistance, late onset sepsis (LOS), necrotizing enterocolitis (NEC), prolonged hospital course (HC) and increase in mortality rates. Objectives: To assess the risk factors and the outcome of prolonged empiric antibiotic therapy in very low birth weight (VLBW) newborns. Materials and Methods: Prospective study in VLBW neonates admitted to NICU and survived > 2 W, from July 2011 - June 2012. All relevant perinatal and postnatal data including duration of antibiotics therapy (Group I < 2W vs Group II > 2W) and outcome up to the time of discharge or death were documented and compared. Results: Out of 145 newborns included in the study, 62 were in group I, and 83 in Group II. Average duration of antibiotic therapy was 14 days (range 3 - 62 days); duration in Group I and Group II was 102.3 vs 25.510.5 days. Hospital stay was 22.311.5 vs 44.3 14.7 days, respectively. Multiple regression analysis revealed following risk factors as significant for prolonged empiric antibiotic therapy: VLBW especially < 1000 g, (P < 0.001), maternal Illness (P = 0.003), chorioamnionitis (P = 0.048), multiple pregnancy (P = 0.03), non-invasive ventilation (P < 0.001) and mechanical ventilation (P < 0.001). Seventy (48.3%) infants developed LOS; 5 with NEC > stage II, 12 (8.3%) newborns died. Infant mortality alone and with LOS/NEC was higher in group II as compared to group I (P < 0.002 and < 0.001 respectively). Conclusions: Prolonged empiric antibiotic therapy caused increasing rates of LOS, NEC, HC and infant mortality
Resumo:
Background: There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. Objective: To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. Materials and Methods: In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham’s F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). Results: After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05). However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB+ and CMA3+) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB+ spermatozoa were increased in both normal dose and high dose groups. Conclusion: Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.