2 resultados para FT-IR microscopy

em Bioline International


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To synthesize silver nanoparticles (AgNPs) of Arbutus andrachne leaf water extract (LE) and to evaluate the antimicrobial activity of both LE and AgNPs. Methods: The synthesized AgNPs were characterized using the following techniques: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and analysis of particle size (PS) and zeta potential (ZP). The antimicrobial activities of LE and NPs were assessed by Kirby-Bauer disc diffusion (DD) and broth microdilution (MD) methods according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI). LE and AgNPs were examined against fresh cultures of four Gram-positive and five Gram-negative bacteria, and three yeast strains. Results: AgNPs were successfully synthesized and characterized using Arbutus andrachne LE. The AgNPs showed moderate antibacterial activity against Staphylococcus aureus ATCC 6538p, S. epidermidis ATCC 12228, Escherichia coli ATCC 29998, Klebsiella pnemoniae ATCC 13883 and Pseudomonas aeruginosa ATCC 27853, and also antifungal activity against Candida albicans ATCC 10239 and C. krusei ATCC 6258. Conclusions: Due to the potent activity of AgNPs against Gram-positive and Gram-negative bacteria, and yeast strains, it is suggested that AgNPs are potential broad spectrum antimicrobial agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To enhance the solubility and dissolution rate of the antidiabetic drug repaglinide by solid dispersion (SD) technique Method: The solid dispersion of repaglinide was prepared by solvent evaporation method using the hydrophilic carrier, polyethylene glycol 4000 (PEG 4000) in three drug:PEG 4000 ratios (1:1, 1:3, 1:5). For comparison, physical mixtures of repaglinide and PEG 4000 in the same ratios were also prepared. The formulations were characterized by Fourier transformed infrared spectroscopy (FTIR), x-ray diffractometry (XRD) and differential scanning colorimetry (DSC). Phase solubility study of pure repaglinide, physical mixture and solid dispersion was performed in distilled water. Dissolution studies were carried out in pH 7.4 phosphate buffer. Results: DSC and XRD results indicate that repaglinide exists in amorphous form in solid dispersion. FT-IR analysis demonstrated the presence of intermolecular hydrogen bonding between repaglinide and PEG 4000 in the solid dispersion. The solubility of pure repaglinide was enhanced from 22.5± 5.0 to 235.5± 5.0 µg/mL in distilled water at 37 0C. Rapid burst release (80 - 86 %) from the solid dispersion formulations was observed within 15 min. Conclusion: The solubility and dissolution rate of repaglinide are enhanced by formulating SDs of repaglinide with PEG 4000. This will likely lead to increase in bioavailability which would be beneficial for better glucose control in diabetic patients.